Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species. 18 Flaveria sample including 11 species are sequenced, other three samples were also sequenced as out-group. In all, 21 samples.
Project description:The genus Flaveria has been extensively used as a model to study the evolution of C4 photosynthesis as it contains both C3 and C4 species as well as a number of species that exhibit intermediate types of photosynthesis. The current phylogenetic tree of the Flaveria genus contains 21 of the 23 known Flaveria species and has been constructed using a combination of morphologicial data and three non-coding DNA sequences (nuclear encoded ETS, ITS and chloroplast encoded trnl-F). However, recent studies have suggested that phylogenetic trees inferred using a small number of molecular sequences may often be incorrect. Moreover, studies in other genera have often shown substantial differences between trees inferred using morphological data and those using molecular sequence. To provide new insight into the phylogeny of the genus Flaveria we utilize RNA-Seq data to construct a multi-gene concatenated phylogenetic tree of 17 Flaveria species. Furthermore, we use this new data to identify 14 C4 specific non-synonymous mutation sites, 12 of which (86%) can be independently verified by public sequence data. We propose that the data collection method provided in this study can be used as a generic method for facilitating phylogenetic tree reconstruction in the absence of reference genomes for the target species.
2015-01-08 | GSE54339 | GEO
Project description:Complete chloroplast genome sequences of three species of the genus Callerya and phylogenetic analysis with related species
Project description:The model organism Encyclopedia of DNA Elements project (modENCODE) has produced a comprehensive annotation of D. melanogaster transcript models based on an enormous amount of high-throughput experimental data. However, some transcribed elements may not be functional, and technical artifacts may lead to erroneous inference of transcription. Inter-species comparison provides confidence to predicted annotation, since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function. We have performed RNA-Seq and CAGE-Seq experiments on more than 80 samples from multiple tissues and stages of 15 Drosophila species, including 8 previously unsequenced genomes. We have found strikingly conserved sequence, expression, and splicing for the vast majority of transcript models in modENCODE annotation (e.g. 99% exons of coding sequences (CDS), 88% exons of untranslated regions (UTR), and 87% splicing events), indicating that the transcriptome annotation is of very high quality. We also describe dynamic transcriptome evolution within the Drosophila genus, including conserved promoter structure, labile positions of transcription start sites, and rapidly evolving RNA-editing events. We demonstrate how this phylogenetic approach to DNA element validation will prove useful in the annotation of other high priority genomes, especially for genomes that are less compact than Drosophila (e.g. the vast majority of vertebrate genomes). Refer to individual Series (listed below).
Project description:The model organism Encyclopedia of DNA Elements project (modENCODE) has produced a comprehensive annotation of D. melanogaster transcript models based on an enormous amount of high-throughput experimental data. However, some transcribed elements may not be functional, and technical artifacts may lead to erroneous inference of transcription. Inter-species comparison provides confidence to predicted annotation, since transcriptional activity that has been evolutionarily conserved is likely to have an advantageous function. We have performed RNA-Seq and CAGE-Seq experiments on more than 80 samples from multiple tissues and stages of 15 Drosophila species, including 8 previously unsequenced genomes. We have found strikingly conserved sequence, expression, and splicing for the vast majority of transcript models in modENCODE annotation (e.g. 99% exons of coding sequences (CDS), 88% exons of untranslated regions (UTR), and 87% splicing events), indicating that the transcriptome annotation is of very high quality. We also describe dynamic transcriptome evolution within the Drosophila genus, including conserved promoter structure, labile positions of transcription start sites, and rapidly evolving RNA-editing events. We demonstrate how this phylogenetic approach to DNA element validation will prove useful in the annotation of other high priority genomes, especially for genomes that are less compact than Drosophila (e.g. the vast majority of vertebrate genomes).
2013-02-25 | GSE44612 | GEO
Project description:Comparative and Phylogenetic Analysis of Complete Chloroplast Genomes using evergreen Quercus species
Project description:Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high value lipid products. First success in applying reverse genetics makes Nannochloropsis species attractive models to investigate the cell and molecular biology and biochemistry of this fascinating organism group. (Principle findings) Here we present the assembly of the 28.7 Mb genome of Nannochloropsis oceanica CCMP1779. RNA sequencing data from N-replete and N-depleted growth conditions support a total of 11,973 genes, which in addition to automatic annotation were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors and 109 transcriptional regulators were annotated. In addition, we provide protocols for the transformation of the sequenced strain. (Significance) The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols provides a blueprint for future detailed gene functional analysis and phylogenetic comparison of Nannochloropsis species by a growing academic community focused on this genus. one sample each of nitrogen-replete and nitrogen-depleted conditions