Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths.
Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:Microarray data for study "The master regulators AphA and LuxR control the Vibrio harveyi quorum-sensing regulon: analysis of their individual and combined effects". Bacteria use a chemical communication process called quorum sensing to control transitions between individual and group behaviors. In the Vibrio harveyi quorum-sensing circuit, two master transcription factors AphA and LuxR coordinate the quorum-sensing response. Here we show that AphA regulates 167 genes, LuxR regulates 625 genes, and they co-regulate 77 genes. LuxR strongly controls genes both at low-cell-density and high-cell-density, suggesting it is the major quorum-sensing regulator. By contrast, AphA is absent at high-cell-density, and acts to fine-tune quorum-sensing gene expression at low-cell-density. We examined two loci as case studies of co-regulation by AphA and LuxR. First, AphA and LuxR directly regulate expression of the genes encoding the quorum regulatory small RNAs Qrr2, Qrr3, and Qrr4, the consequence of which is a specifically timed transition between the individual and the group lifestyle. Second, AphA and LuxR repress type III secretion system genes but at different times and to different extents. The consequence of this regulation is that type III secretion is restricted to a peak at mid-cell-density. Thus, asymmetric production of AphA and LuxR coupled with differences in their strength and timing of target gene regulation generates a precise temporal pattern of gene expression. Triplicate biological samples of Vibrio harveyi strains BB721 and JAF548 were hybridized to Agilent arrays (Amadid design ID: 037644), and one experiment was a control dye-swap, for a total of four experiments in this array set.
Project description:Microarray data for study "The master regulators AphA and LuxR control the Vibrio harveyi quorum-sensing regulon: analysis of their individual and combined effects". Bacteria use a chemical communication process called quorum sensing to control transitions between individual and group behaviors. In the Vibrio harveyi quorum-sensing circuit, two master transcription factors AphA and LuxR coordinate the quorum-sensing response. Here we show that AphA regulates 167 genes, LuxR regulates 625 genes, and they co-regulate 77 genes. LuxR strongly controls genes both at low-cell-density and high-cell-density, suggesting it is the major quorum-sensing regulator. By contrast, AphA is absent at high-cell-density, and acts to fine-tune quorum-sensing gene expression at low-cell-density. We examined two loci as case studies of co-regulation by AphA and LuxR. First, AphA and LuxR directly regulate expression of the genes encoding the quorum regulatory small RNAs Qrr2, Qrr3, and Qrr4, the consequence of which is a specifically timed transition between the individual and the group lifestyle. Second, AphA and LuxR repress type III secretion system genes but at different times and to different extents. The consequence of this regulation is that type III secretion is restricted to a peak at mid-cell-density. Thus, asymmetric production of AphA and LuxR coupled with differences in their strength and timing of target gene regulation generates a precise temporal pattern of gene expression. Triplicate biological samples of Vibrio harveyi strains STR416 and JV55 were hybridized to Agilent arrays (Amadid design ID: 021087), and one experiment was a control dye-swap, for a total of four experiments in this array set.
Project description:Microarray data for study "The master regulators AphA and LuxR control the Vibrio harveyi quorum-sensing regulon: analysis of their individual and combined effects". Bacteria use a chemical communication process called quorum sensing to control transitions between individual and group behaviors. In the Vibrio harveyi quorum-sensing circuit, two master transcription factors AphA and LuxR coordinate the quorum-sensing response. Here we show that AphA regulates 167 genes, LuxR regulates 625 genes, and they co-regulate 77 genes. LuxR strongly controls genes both at low-cell-density and high-cell-density, suggesting it is the major quorum-sensing regulator. By contrast, AphA is absent at high-cell-density, and acts to fine-tune quorum-sensing gene expression at low-cell-density. We examined two loci as case studies of co-regulation by AphA and LuxR. First, AphA and LuxR directly regulate expression of the genes encoding the quorum regulatory small RNAs Qrr2, Qrr3, and Qrr4, the consequence of which is a specifically timed transition between the individual and the group lifestyle. Second, AphA and LuxR repress type III secretion system genes but at different times and to different extents. The consequence of this regulation is that type III secretion is restricted to a peak at mid-cell-density. Thus, asymmetric production of AphA and LuxR coupled with differences in their strength and timing of target gene regulation generates a precise temporal pattern of gene expression. Triplicate biological samples of Vibrio harveyi strains STR415 and JV54 were hybridized to Agilent arrays (Amadid design ID: 021087), and one experiment was a control dye-swap, for a total of four experiments in this array set.
Project description:Microarray data for study "The master regulators AphA and LuxR control the Vibrio harveyi quorum-sensing regulon: analysis of their individual and combined effects". Bacteria use a chemical communication process called quorum sensing to control transitions between individual and group behaviors. In the Vibrio harveyi quorum-sensing circuit, two master transcription factors AphA and LuxR coordinate the quorum-sensing response. Here we show that AphA regulates 167 genes, LuxR regulates 625 genes, and they co-regulate 77 genes. LuxR strongly controls genes both at low-cell-density and high-cell-density, suggesting it is the major quorum-sensing regulator. By contrast, AphA is absent at high-cell-density, and acts to fine-tune quorum-sensing gene expression at low-cell-density. We examined two loci as case studies of co-regulation by AphA and LuxR. First, AphA and LuxR directly regulate expression of the genes encoding the quorum regulatory small RNAs Qrr2, Qrr3, and Qrr4, the consequence of which is a specifically timed transition between the individual and the group lifestyle. Second, AphA and LuxR repress type III secretion system genes but at different times and to different extents. The consequence of this regulation is that type III secretion is restricted to a peak at mid-cell-density. Thus, asymmetric production of AphA and LuxR coupled with differences in their strength and timing of target gene regulation generates a precise temporal pattern of gene expression. Triplicate biological samples of Vibrio harveyi strains KM808 and JV54 were hybridized to Agilent arrays (Amadid design ID: 021087), and one experiment was a control dye-swap, for a total of four experiments in this array set.
Project description:Microarray data for study "The master regulators AphA and LuxR control the Vibrio harveyi quorum-sensing regulon: analysis of their individual and combined effects". Bacteria use a chemical communication process called quorum sensing to control transitions between individual and group behaviors. In the Vibrio harveyi quorum-sensing circuit, two master transcription factors AphA and LuxR coordinate the quorum-sensing response. Here we show that AphA regulates 167 genes, LuxR regulates 625 genes, and they co-regulate 77 genes. LuxR strongly controls genes both at low-cell-density and high-cell-density, suggesting it is the major quorum-sensing regulator. By contrast, AphA is absent at high-cell-density, and acts to fine-tune quorum-sensing gene expression at low-cell-density. We examined two loci as case studies of co-regulation by AphA and LuxR. First, AphA and LuxR directly regulate expression of the genes encoding the quorum regulatory small RNAs Qrr2, Qrr3, and Qrr4, the consequence of which is a specifically timed transition between the individual and the group lifestyle. Second, AphA and LuxR repress type III secretion system genes but at different times and to different extents. The consequence of this regulation is that type III secretion is restricted to a peak at mid-cell-density. Thus, asymmetric production of AphA and LuxR coupled with differences in their strength and timing of target gene regulation generates a precise temporal pattern of gene expression.
Project description:Microarray data for study "The master regulators AphA and LuxR control the Vibrio harveyi quorum-sensing regulon: analysis of their individual and combined effects". Bacteria use a chemical communication process called quorum sensing to control transitions between individual and group behaviors. In the Vibrio harveyi quorum-sensing circuit, two master transcription factors AphA and LuxR coordinate the quorum-sensing response. Here we show that AphA regulates 167 genes, LuxR regulates 625 genes, and they co-regulate 77 genes. LuxR strongly controls genes both at low-cell-density and high-cell-density, suggesting it is the major quorum-sensing regulator. By contrast, AphA is absent at high-cell-density, and acts to fine-tune quorum-sensing gene expression at low-cell-density. We examined two loci as case studies of co-regulation by AphA and LuxR. First, AphA and LuxR directly regulate expression of the genes encoding the quorum regulatory small RNAs Qrr2, Qrr3, and Qrr4, the consequence of which is a specifically timed transition between the individual and the group lifestyle. Second, AphA and LuxR repress type III secretion system genes but at different times and to different extents. The consequence of this regulation is that type III secretion is restricted to a peak at mid-cell-density. Thus, asymmetric production of AphA and LuxR coupled with differences in their strength and timing of target gene regulation generates a precise temporal pattern of gene expression.
Project description:Microarray data for study "The master regulators AphA and LuxR control the Vibrio harveyi quorum-sensing regulon: analysis of their individual and combined effects". Bacteria use a chemical communication process called quorum sensing to control transitions between individual and group behaviors. In the Vibrio harveyi quorum-sensing circuit, two master transcription factors AphA and LuxR coordinate the quorum-sensing response. Here we show that AphA regulates 167 genes, LuxR regulates 625 genes, and they co-regulate 77 genes. LuxR strongly controls genes both at low-cell-density and high-cell-density, suggesting it is the major quorum-sensing regulator. By contrast, AphA is absent at high-cell-density, and acts to fine-tune quorum-sensing gene expression at low-cell-density. We examined two loci as case studies of co-regulation by AphA and LuxR. First, AphA and LuxR directly regulate expression of the genes encoding the quorum regulatory small RNAs Qrr2, Qrr3, and Qrr4, the consequence of which is a specifically timed transition between the individual and the group lifestyle. Second, AphA and LuxR repress type III secretion system genes but at different times and to different extents. The consequence of this regulation is that type III secretion is restricted to a peak at mid-cell-density. Thus, asymmetric production of AphA and LuxR coupled with differences in their strength and timing of target gene regulation generates a precise temporal pattern of gene expression.