Project description:Adolescence is a critical period in cognitive and emotional development, characterized by high levels of social interaction and increases in risk-taking behavior including binge drinking. Adolescent exposure to social stress and binge ethanol have individually been associated with the development of social, emotional, and cognitive deficits, as well as increased risk for alcohol use disorder. Disruption of cortical development by early life social stress and/or binge drinking may partly underlie these enduring emotional, cognitive, and behavioral effects. The study goal is to implement a novel neighbor housing environment to identify the effects of adolescent neighbor housing and/or binge ethanol drinking on (1) a battery of emotional and cognitive tasks (2) adult ethanol drinking behavior, and (3) the nucleus accumbens and prefrontal cortex transcriptome. Adolescent male and female C57BL/6J mice were single or neighbor housed with or without access to intermittent ethanol. One cohort underwent behavioral testing during adulthood to determine social preference, expression of anxiety-like behavior, cognitive performance, and patterns of ethanol intake. The second cohort was sacrificed in late adolescence and brain tissue was used for transcriptomics analysis. As adults, single housed mice displayed decreased social interaction, deficits in the novel object recognition task, and increased anxiety-like behavior, relative to neighbor-housed mice. There was no effect of housing condition on adolescent or adult ethanol consumption. Adolescent ethanol exposure did not alter adult ethanol intake. Transcriptomics analysis revealed that adolescent housing condition and ethanol exposure resulted in differential expression of genes related to synaptic plasticity in the nucleus accumbens and genes related to methylation, the extracellular matrix and inflammation in the prefrontal cortex. The behavioral results indicate that social interaction during adolescence via the neighbor housing model may protect against emotional, social, and cognitive deficits. In addition, the transcriptomics results suggest that these behavioral alterations may be mediated in part by dysregulation of transcription in the frontal cortex or the nucleus accumbens
Project description:Exposure to alcohol during early embryonic or fetal development has been linked with a variety of adverse outcomes, the most common of which are structural and functional abnormalities of the central nervous system. Behavioral and cognitive deficits reported in individuals exposed to alcohol in utero include intellectual impairment, learning and memory difficulties, diminished executive functioning, attention problems, poor motor function and hyperactivity. The economic and social costs of these outcomes are substantial and profound. Improvement of neurobehavioural outcomes following prenatal alcohol exposure requires greater understanding of the mechanisms of alcohol-induced damage to the brain. Here we use a mouse model of relatively moderate ethanol exposure early in pregnancy and profile gene expression in the hippocampus and caudate putamen of adult male offspring. The effects of offspring sex and age on ethanol-sensitive hippocampal gene expression were also examined.
Project description:Exposure to alcohol during early embryonic or fetal development has been linked with a variety of adverse outcomes, the most common of which are structural and functional abnormalities of the central nervous system. Behavioral and cognitive deficits reported in individuals exposed to alcohol in utero include intellectual impairment, learning and memory difficulties, diminished executive functioning, attention problems, poor motor function and hyperactivity. The economic and social costs of these outcomes are substantial and profound. Improvement of neurobehavioural outcomes following prenatal alcohol exposure requires greater understanding of the mechanisms of alcohol-induced damage to the brain. Here we use a mouse model of relatively moderate ethanol exposure early in pregnancy and profile gene expression in the hippocampus and caudate putamen of adult male offspring. The effects of offspring sex and age on ethanol-sensitive hippocampal gene expression were also examined.
Project description:Exposure to alcohol during early embryonic or fetal development has been linked with a variety of adverse outcomes, the most common of which are structural and functional abnormalities of the central nervous system. Behavioral and cognitive deficits reported in individuals exposed to alcohol in utero include intellectual impairment, learning and memory difficulties, diminished executive functioning, attention problems, poor motor function and hyperactivity. The economic and social costs of these outcomes are substantial and profound. Improvement of neurobehavioural outcomes following prenatal alcohol exposure requires greater understanding of the mechanisms of alcohol-induced damage to the brain. Here we use a mouse model of relatively moderate ethanol exposure early in pregnancy and profile gene expression in the hippocampus and caudate putamen of adult male offspring. The effects of offspring sex and age on ethanol-sensitive hippocampal gene expression were also examined.
Project description:Cisplatin is a broad-spectrum anti-cancer drugs used in diverse types of cancer, however, muscle wasting is one of the most common side effects of cisplatin chemotherapy. This study aimed to elucidate the effects of an ethanol extract of the root of Paeonia lactiflora Pall. (Radix Paeoniae, RP) on cisplatin-induced muscle wasting along with its molecular mechanism.
Project description:Erythropoietin (EPO), named after its role in hematopoiesis, is also expressed in the mammalian brain. In clinical settings, recombinant EPO had revealed a remarkable improvement of cognitive functions, but the underlying mechanisms have remained obscure. Animal studies demonstrated, however, that neuronal EPO effects are independent of an elevated hematocrit. Here, we show with a novel line of reporter mice that cognitive challenge leads to local/endogenous hypoxia in hippocampal pyramidal neurons where it induces enhanced expression of both EPO and EPO receptor (EPOR). High-dose EPO administration, which amplifies auto/paracrine EPO/EPOR signaling, prompts the emergence of new CA1 neurons and enhanced dendritic spine densities. Single cell sequencing reveals rapid increase in newly differentiating neurons. Importantly, improved performance on complex running wheels after EPO treatment is imitated by exposure to mild exogenous/inspiratory hypoxia. All these effects depend on neuronal expression of the Epor gene. Taken together, this suggests a novel cellular model of neuroplasticity in which neuronal networks, challenged by cognitive tasks, drift into transient hypoxia which becomes a trigger of neuronal EPO/EPOR expression. This regulatory circle causes long-lasting neuroplastic adaptation, and as fundamental cellular mechanism, may be relevant for strategies aiming at cognitive improvement.
Project description:Moderate alcohol exposure during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse model of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear. We used a microarray experiment and focused on the genes identified by both to evaluate the genome-wide alterations to the adult brain transcriptome caused by prenatal ethanol exposure. To generate samples, female C57BL/6J mice were given ethanol injections (2.5g/kg of ethanol in saline) twice on gestational days 8 and 11 to produce acute ethanol exposure effects. Control females were injected with the same volume of saline. Females were mated. Whole brain RNA from adult (postnatal day 70) male ethanol-exposed offspring was extracted. RNA samples from three mice were pooled to reduce litter effects and the pooled samples were hybridized on Affymetrix arrays (2 control and 2 ethanol chips, total n=12 mice).
Project description:Moderate alcohol exposure during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse model of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear. We used a microarray experiment and focused on the genes identified by both to evaluate the genome-wide alterations to the adult brain transcriptome caused by prenatal ethanol exposure.
Project description:Moderate alcohol consumption during pregnancy can result in a heterogeneous range of neurobehavioural and cognitive effects, termed fetal alcohol spectrum disorders (FASD). We have developed a mouse moder of FASD that involves moderate ethanol exposure throughout gestation achieved by voluntary maternal consumption. This model results in phenotypes relevant to FASD. Since ethanol is known to directly affect the expression of genes in the developing brain leading to abnormal cell death, changes to cell proliferation, migration, and differentiation, and potential changes to epigenetic patterning, we hypothesize that this leaves a long-term footprint on the adult brain. However, the long-term effects of prenatal ethanol exposure on brain gene expression, when behavioural phenotypes are apparent, are unclear. We used two independent microarray experiments and focused on the genes identified by both to evaluate the genome-wide alterations to the adult brain transcriptome caused by prenatal ethanol exposure via moderate maternal drinking.