Project description:Metagenome data from soil samples were collected at 0 to 10cm deep from 2 avocado orchards in Channybearup, Western Australia, in 2024. Amplicon sequence variant (ASV) tables were constructed based on the DADA2 pipeline with default parameters.
Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:A cDNA library was constructed by Novogene (CA, USA) using a Small RNA Sample Pre Kit, and Illumina sequencing was conducted according to company workflow, using 20 million reads. Raw data were filtered for quality as determined by reads with a quality score > 5, reads containing N < 10%, no 5' primer contaminants, and reads with a 3' primer and insert tag. The 3' primer sequence was trimmed and reads with a poly A/T/G/C were removed
Project description:This data set contains 1376 mass spectrometry reads from root, rhizosphere and leaf sample of Populus Trichocarpa, as well as associated controls. This metabolomics data set was collected as part of a larger campaign which complements the metabolomics data with metagenome sequencing, transcriptomics, and soil measurement data.
Project description:Whole exome sequencing of 5 HCLc tumor-germline pairs. Genomic DNA from HCLc tumor cells and T-cells for germline was used. Whole exome enrichment was performed with either Agilent SureSelect (50Mb, samples S3G/T, S5G/T, S9G/T) or Roche Nimblegen (44.1Mb, samples S4G/T and S6G/T). The resulting exome libraries were sequenced on the Illumina HiSeq platform with paired-end 100bp reads to an average depth of 120-134x. Bam files were generated using NovoalignMPI (v3.0) to align the raw fastq files to the reference genome sequence (hg19) and picard tools (v1.34) to flag duplicate reads (optical or pcr), unmapped reads, reads mapping to more than one location, and reads failing vendor QC.
Project description:We use nucleosome maps obtained by high-throughput sequencing to study sequence specificity of intrinsic histone-DNA interactions. In contrast with previous approaches, we employ an analogy between a classical one-dimensional fluid of finite-size particles in an arbitrary external potential and arrays of DNA-bound histone octamers. We derive an analytical solution to infer free energies of nucleosome formation directly from nucleosome occupancies measured in high-throughput experiments. The sequence-specific part of free energies is then captured by fitting them to a sum of energies assigned to individual nucleotide motifs. We have developed hierarchical models of increasing complexity and spatial resolution, establishing that nucleosome occupancies can be explained by systematic differences in mono- and dinucleotide content between nucleosomal and linker DNA sequences, with periodic dinucleotide distributions and longer sequence motifs playing a secondary role. Furthermore, similar sequence signatures are exhibited by control experiments in which genomic DNA is either sonicated or digested with micrococcal nuclease in the absence of nucleosomes, making it possible that current predictions based on highthroughput nucleosome positioning maps are biased by experimental artifacts. Included are raw (eland) and mapped (wig) reads. The mapped reads are provided in eland and wiggle formats, and the raw reads are included in the eland file. This series includes only Mnase control data. The sonicated control is part of this already published accession, as is a in vitro nucleosome map: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE15188 We also studied data (in vitro and in vivo maps as well as a model) from http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13622 and from: http://www.ncbi.nlm.nih.gov/sra/?term=SRA001023
Project description:Purpose: In order to understand the functional significance of sperm transcriptome in stallion fertility, the aim of this study was to generate a detailed body of knowledge about the sperm RNA profile that defines a normal fertile stallion. Methods: The 50 bp single-end ABI SOLiD raw reads were directly aligned with the horse reference sequence EcuCab2 using ABI aligner software (NovoalignCS version 1.00.09, novocraft.com) which uses multiple indexes in the reference genome, identifies candidate alignment locations for each primary read, and allows completion of the alignment. Results: Next generation sequencing (NGS) of total RNA from the sperm of two reproductively normal stallions generated about 70 million raw reads and more than 3 Gb of sequence per sample; over half of these aligned with the EcuCab2 reference genome. Altogether, 19,257 sequence tags with average coverage ?1 (normalized number of transcripts) were mapped in the horse genome. Conclusion: The sequence of stallion sperm transcriptome is an important foundation for the discovery of transcripts of known and novel genes, and non-coding RNAs, thus improving the annotation of the horse genome sequence draft and providing markers for evaluating stallion fertility. Reproductively fertile Stallion sperm transcriptome as revealed by RNA sequencing
Project description:To identify more targets in soybean, particularly specific targets of Cd-stress-responsive miRNAs, high-throughput degradome sequencing was used. In total, we obtained 8913111 raw reads from the library which was constructed from a mixture of four samples (HX3-CK, HX3-Cd-treatment, ZH24-CK and ZH24-Cd-treatment). After removing the reads without the CAGAG adaptor, 5430126 unique raw-reads were obtained. The unique sequences were aligned to the G. max genome database, and 6516276 reads were mapped to the genome. The mapped reads from the libraries represented 51481 annotated G. max genes.