Project description:ϕXacN1 is a novel jumbo myovirus infecting the causative agent of Asian citrus canker, Xanthomonas citri. Its linear 384,670 bp double-stranded DNA genome encodes 592 predicted protein coding genes and shows 65,875 bp direct terminal repeats (DTRs), so far the longest DTRs among sequence phage genomes. The DTRs harbor 56 tRNA genes, corresponding to all 20 amino acids. This is the highest number of tRNA genes reported in a phage genome. Codon usage analyses revealed a propensity that the phage encoded tRNAs target codons that are highly used by the phage but less frequently by its host. The existence of these tRNA genes, additional seven translation-related genes as well as a chaperonin gene found in the ϕXacN1 genome suggests an increased level of independence of phage replication on host molecular machinery and a wide host range. Consistently, ϕXacN1 showed a wider host range than other X. citri phages in an infection test against a panel of X. citri strains. Phylogenetic analyses revealed a clade of phages composed of ϕXacN1 and ten other jumbo phages showing an evolutionary stability in their large genome sizes.
Project description:Many, if not all, bacteria use quorum sensing (QS) to control gene expression and collective behaviours, and more recently QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or “listen in” on the host’s communication processes, in order to switch between lytic and lysogenic modes of infection. In this project, we studied the interaction of Vibrio cholerae, the causative agent of cholera disease, with the lysogenic vibriophage VP882. The lytic cycle of VP882 is induced by the QS molecule DPO (3,5-dimethylpyrazin-2-ol), however, the global regulatory consequences of DPO-mediated VP882 activation have remained unclear. Using a combination of transcriptomic, genetic, and biochemical approaches, we discovered that induction of VP882 results in binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompete and down-regulate host-derived Hfq-dependent small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs and we demonstrate that one of these sRNAs, named VpdS, modulates the expression of multiple host and phage mRNAs through a base-pairing mechanism and thereby promotes phage replication. We further show that host-derived sRNAs can affect phage replication by interfering with the translation of phage mRNAs and thus might be part of the phage defence arsenal of the host. Taken together, our data draw a complex picture of post-transcriptional interactions occurring between host- and phage-derived transcripts that together determine the phage-mediated lysis program.
Project description:Many, if not all, bacteria use quorum sensing (QS) to control gene expression and collective behaviours, and more recently QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or “listen in” on the host’s communication processes, in order to switch between lytic and lysogenic modes of infection. In this project, we studied the interaction of Vibrio cholerae, the causative agent of cholera disease, with the lysogenic vibriophage VP882. The lytic cycle of VP882 is induced by the QS molecule DPO (3,5-dimethylpyrazin-2-ol), however, the global regulatory consequences of DPO-mediated VP882 activation have remained unclear. Using a combination of transcriptomic, genetic, and biochemical approaches, we discovered that induction of VP882 results in binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompete and down-regulate host-derived Hfq-dependent small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs and we demonstrate that one of these sRNAs, named VpdS, modulates the expression of multiple host and phage mRNAs through a base-pairing mechanism and thereby promotes phage replication. We further show that host-derived sRNAs can affect phage replication by interfering with the translation of phage mRNAs and thus might be part of the phage defence arsenal of the host. Taken together, our data draw a complex picture of post-transcriptional interactions occurring between host- and phage-derived transcripts that together determine the phage-mediated lysis program.
Project description:Many, if not all, bacteria use quorum sensing (QS) to control gene expression and collective behaviours, and more recently QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or “listen in” on the host’s communication processes, in order to switch between lytic and lysogenic modes of infection. In this project, we studied the interaction of Vibrio cholerae, the causative agent of cholera disease, with the lysogenic vibriophage VP882. The lytic cycle of VP882 is induced by the QS molecule DPO (3,5-dimethylpyrazin-2-ol), however, the global regulatory consequences of DPO-mediated VP882 activation have remained unclear. Using a combination of transcriptomic, genetic, and biochemical approaches, we discovered that induction of VP882 results in binding of phage transcripts to the major RNA chaperone Hfq, which in turn outcompete and down-regulate host-derived Hfq-dependent small RNAs (sRNAs). VP882 itself also encodes Hfq-binding sRNAs and we demonstrate that one of these sRNAs, named VpdS, modulates the expression of multiple host and phage mRNAs through a base-pairing mechanism and thereby promotes phage replication. We further show that host-derived sRNAs can affect phage replication by interfering with the translation of phage mRNAs and thus might be part of the phage defence arsenal of the host. Taken together, our data draw a complex picture of post-transcriptional interactions occurring between host- and phage-derived transcripts that together determine the phage-mediated lysis program.
Project description:The emergence of carbapenem-resistant Acinetobacter baumannii has been increasingly reported, leading to more challenges in treating its infections. With the development of phage therapy and phage-antibiotic combinations, it is possible to improve the treatment of bacterial infections. In the present study, a vB_AbaP_WU2001 (vWU2001 for short) phage-specific CRAB was isolated and the genome size is 40,792 bp in length. The novel phage vWU2001 belongs to the Autographiviridae family and the order Caudovirales. Shotgun proteomics identified 289 proteins. The broad host range phage vWU2001 displayed a high adsorption rate, short latent period, large burst size and good stability. The phage could reduce preformed biofilms and inhibit biofilm formation. The combination of phage vWU2001 and colistin had significantly higher bacterial growth inhibition activity than that of phage, or colistin alone. The efficacy of the combined treatment was also evaluated in Galleria mellonella. The evaluation of its therapeutic potential revealed that the combination of phage and colistin showed a significantly greater increase in G. mellonella survival and clearance of bacterial number compared to that of phage or colistin alone, indicating that the combination was synergistic against CRAB. The results demonstrated that phage vWU2001 has the potential to be developed as an antibacterial agent.
Project description:We used microarray analysis to investigate whole genome transcriptome dynamics of the marine cyanobacterium Prochlorococcus sp. strain MED4 and the T7-like podovirus P-SSP7 over a time course during the 8 hour latent period of lytic infection prior to cell lysis. Manuscript Summary: Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process1-5. Phage-mediated transfer of host genes – often located in genome islands – has had a major impact on microbial evolution1, 4, 6. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts2, 3, 5. Here we investigate whole-genome expression of a host and phage, the marine cyanobacterium Prochlorococcus and a T7-like cyanophage during lytic infection, to gain insight into these co-evolutionary processes. While most of the phage genome was linearly transcribed over the course of infection, 4 phage-encoded bacterial metabolism genes were part of the same expression cluster, even though they are physically separated on the genome. These genes — encoding photosystem II D1 (psbA), high-light inducible protein (hli), transaldolase (talC) and ribonucleotide reductase (nrd) — are transcribed together with phage DNA replication genes and appear to make up a functional unit involved in energy and deoxynucleotide production needed for phage replication in resource-poor oceans. Also unique to this system was the upregulation of numerous genes in the host during infection. These may be host stress response genes, and/or genes induced by the phage. Many of these host genes are located in genome islands and have homologues in cyanophage genomes. We hypothesize that phage have evolved to utilize upregulated host genes, leading to their stable incorporation into phage genomes and their subsequent transfer back to hosts in genome islands. Thus activation of host genes during infection may be directing the co-evolution of gene content in both host and phage genomes. Keywords: time course, viral infection, marine cyanobacteria, podovirus, bacteriophage, stress response
Project description:Phage therapy is a therapeutic approach to treat multidrug resistant infections that employs lytic bacteriophages (phages) to eliminate bacteria. Despite the abundant evidence for its success as an antimicrobial in Eastern Europe, there is scarce data regarding its effects on the human host. Here, we aimed to understand how lytic phages interact with cells of the airway epithelium, the tissue site that is colonized by bacterial biofilms in numerous chronic respiratory disorders. Using a panel of Pseudomonas aeruginosa phages and human airway epithelial cells derived from a person with cystic fibrosis, we determined that interactions between phages and epithelial cells depend on specific phage properties as well as physiochemical features of the microenvironment. Although poor at internalizing phages, the airway epithelium responds to phage exposure by changing its transcriptional profile and secreting antiviral and proinflammatory cytokines that correlate with specific phage families. Overall, our findings indicate that mammalian responses to phages are heterogenous and could potentially alter the way that respiratory local defenses aid in bacterial clearance during phage therapy. Thus, besides phage receptor specificity in a particular bacterial isolate, the criteria to select lytic phages for therapy should be expanded to include mammalian cell responses.
Project description:After the attachment of the lytic phage T4 to Escherichia coli cells, 1% E. coli cells showed an approximately 40-fold increase in mutant frequency. They were designated as mutator A global transcriptome analysis using microarrays was conducted to determine the difference between parental strain and mutators, and the host responce after adsorption of the phage and the ghost.