Project description:Wide variation of responses to identical stimuli presented to genetically inbred mice suggests the hypothesis that stochastic non-genetic variation, such as in chromatin state or enhancer activity during neurodevelopment, can mediate such phenotypic differences. However, this hypothesis is largely untested since capturing pre-existing molecular states requires non-destructive, longitudinal recording. Therefore, we tested the potential of Calling Cards (CC) to record transient neuronal enhancer activity during postnatal development, and thereby associate such non-genetic variation with a subsequent phenotypic presentation – degree of seizure response to the pro-convulsant pentylenetetrazol. We show that recorded differences in enhancer activity at 243 loci predict a severe vs. mild response, and that these are enriched near genes associated with human epilepsy. We also validated pharmacologically a seizure-modifying role for two novel genes, Htr1f and Let7c. This proof-of-principle supports using CC broadly to discover predisposition loci for other neuropsychiatric traits and behaviors. Finally, as human disease is also influenced by non-genetic factors, similar epigenetic predispositions are possible in humans.
Project description:A Gene Expression Signature that Predicts the Future Onset of Drug-Induced Renal Tubular Toxicity These data support the publication titled "A Gene Expression Signature that Predicts the Future Onset of Drug-Induced Renal Tubular Toxicity" Copyright (c) 2005 by Iconix Pharmaceuticals, Inc. Guidelines for commercial use: http://www.iconixbiosciences.com/guidelineCommUse.pdf replicated drug treatments with controls
Project description:A Gene Expression Signature that Predicts the Future Onset of Drug-Induced Renal Tubular Toxicity These data support the publication titled "A Gene Expression Signature that Predicts the Future Onset of Drug-Induced Renal Tubular Toxicity" Copyright (c) 2005 by Iconix Pharmaceuticals, Inc. Guidelines for commercial use: http://www.iconixbiosciences.com/guidelineCommUse.pdf Keywords: time course
Project description:Early childhood convulsions have been correlated with hippocampal neuron loss in patients with intractable temporal lobe epilepsy. Using a "two-hit" rat seizure model, we have shown that animals subjected to kainate (KA)- or hypoxia-induced seizures during early postnatal period showed no cell death, yet sustained more extensive neuronal death after second seizures in adulthood. An early life seizure, without causing overt cellular injury, predisposes the brain to the damaging effect of seizures in later life. Cellular and molecular changes that accompany early seizures and that lead to subsequent epileptogenesis and increased susceptibility to seizure-induced neuronal injury, however, remain poorly understood. We propose to investigate age-specific, time-dependent changes in gene expression that may underlie this priming effect of early-life seizures. We will determine the sequence of gene expression pattern in the hippocampus at various times following KA induced seizures at postnatal day (P) 15. Previous studies have shown that AMPA receptor subtype of glutamate receptors play a crucial role in the age-specific vulnerability and in the long-term epileptogenic effects of perinatal hypoxia seizures. We found that AMPA receptor antagonists block the increased susceptibility caused by early life seizures to later seizures and seizure-induced brain damage. We hypothesize that an alteration of AMPA receptor composition is one of many changes caused by early-life seizures that leads to an increase in Ca2+ permeability, which then results in cascade of downstream events and modifies array of gene expression that promote epileptogenesis and susceptibility to neuronal death in later life. We will examine three time points: 1hr, 72 hr, and 15 days following systemic KA-induced seizures at P15 as we have previously observed structural changes within the hippocampus at these time points. Within an hour of KA seizures, a marked swelling of dendrites, disassembly of dendritic microtubules and glycogen depletion are observed by electron microscopy. Within 5 days, basal dendrites of CA3 hippocampal pyramidal neurons show abnormal spine morphology and decreased branching pattern. 15 days after the seizures, aberrant growth of mossy fibers in the CA3 stratum oriens is observed in animals exposed to KA. Ten hippocampi will be pooled from five animals treated with KA (3mg/kg i.p.) and from five littermate controls injected with PBS. Animals will be decapitated and hippocampi will be rapidly dissected from the brain, flash frozen in liquid nitrogen, and stored at -80C until extraction of total RNA, which will be sent to the center. We will provide 4 tissue samples-2 controls and 2 KA, each a pool of five animals - for each time points. Mixing tissues from multiple rats will normalize single nucleotide polymorphisms and tissue heterogeneity.
Project description:Stroke is a prevalent disorder representing the third leading cause of death and major cause of disability. Post-stroke epilepsy (PSE) has been recognized as a common clinical issue after stroke, accounting for 30-40% of the causes of epilepsy among older adults. In this study, we determined GABAA receptor-mediated seizure susceptibility after PT cerebral stroke in aged mice. Young adult mice around 10 weeks of age are widely used in stroke experiments. However, as most strokes are diagnosed in the elderly and PSE has been recognized as a common clinical incidence after stroke, we utilized photothrombosis (PT) model of cerebral ischemia and examined seizure susceptibility and brain injury using combined behavioral (video) and EEG monitoring and histological (MRI) assessments. To investigate GABAA receptor-mediated convulsive/non-convulsive seizures, lower-doses of pentylenetetrazol (PTZ) was injected. PTZ susceptibility in aging mice increased compared to young adults. One month after PT stroke, aged PT stroke mice exhibited severe convulsive seizures (late-onset). These findings exhibited the increase of GABAA receptor-mediated seizures susceptibility in PT stroke aging mice, but not in young adults.
Project description:Early childhood convulsions have been correlated with hippocampal neuron loss in patients with intractable temporal lobe epilepsy. Using a "two-hit" rat seizure model, we have shown that animals subjected to kainate (KA)- or hypoxia-induced seizures during early postnatal period showed no cell death, yet sustained more extensive neuronal death after second seizures in adulthood. An early life seizure, without causing overt cellular injury, predisposes the brain to the damaging effect of seizures in later life. Cellular and molecular changes that accompany early seizures and that lead to subsequent epileptogenesis and increased susceptibility to seizure-induced neuronal injury, however, remain poorly understood. We propose to investigate age-specific, time-dependent changes in gene expression that may underlie this priming effect of early-life seizures. We will determine the sequence of gene expression pattern in the hippocampus at various times following KA induced seizures at postnatal day (P) 15. Previous studies have shown that AMPA receptor subtype of glutamate receptors play a crucial role in the age-specific vulnerability and in the long-term epileptogenic effects of perinatal hypoxia seizures. We found that AMPA receptor antagonists block the increased susceptibility caused by early life seizures to later seizures and seizure-induced brain damage. We hypothesize that an alteration of AMPA receptor composition is one of many changes caused by early-life seizures that leads to an increase in Ca2+ permeability, which then results in cascade of downstream events and modifies array of gene expression that promote epileptogenesis and susceptibility to neuronal death in later life. We will examine three time points: 1hr, 72 hr, and 15 days following systemic KA-induced seizures at P15 as we have previously observed structural changes within the hippocampus at these time points. Within an hour of KA seizures, a marked swelling of dendrites, disassembly of dendritic microtubules and glycogen depletion are observed by electron microscopy. Within 5 days, basal dendrites of CA3 hippocampal pyramidal neurons show abnormal spine morphology and decreased branching pattern. 15 days after the seizures, aberrant growth of mossy fibers in the CA3 stratum oriens is observed in animals exposed to KA. Ten hippocampi will be pooled from five animals treated with KA (3mg/kg i.p.) and from five littermate controls injected with PBS. Animals will be decapitated and hippocampi will be rapidly dissected from the brain, flash frozen in liquid nitrogen, and stored at -80C until extraction of total RNA, which will be sent to the center. We will provide 4 tissue samples-2 controls and 2 KA, each a pool of five animals - for each time points. Mixing tissues from multiple rats will normalize single nucleotide polymorphisms and tissue heterogeneity. Keywords: time-course