Project description:This study examines whether maternal low ω6:ω3 ratio diet and offspring seaweed (SW) supplementation can improve offspring immunity and performance by elucidating the effects on piglet serum proteome. A total of 16 sows were given either a standard (CR, 13:1) or low ω6:ω3 ratio diet (LR, 4:1) during pregnancy and lactation and their male weaned piglets were supplemented with SW powder (4 g/kg, SW) or not (CT) in a 21-day post-weaning (PW) diet. Four PW piglet groups were then identified based on dam and piglet treatment, namely CRCT, CRSW, LRCT, and LRSW (n = 10 each). Piglet serum collected at weaning and d21 PW were analyzed (n = 5 each) using TMT-based quantitative proteomics and validated by appropriate assays.
Project description:probiotics and prebiotics to maternal diets is related to decreased incidence of diarrhea and greater weight gain during lactation. Our objective was to determine the impact of adding whole ground oat as a prebiotic alone or in combination with postbiotic yeast culture (YC) (Saccharomyces cerevisiae) to sow gestation and lactation rations on milk composition, piglet growth, and incidence of post weaning diarrhea (PWD). Diets: control (CON), CON + yeast culture (YC) [5g/kg], CON + oat (15% inclusion rate) (Oat) or CON+ YC [5g/kg] + Oat (15%) were fed during the last 30 days of gestation and throughout lactation (18-21 days). Shotgun proteome analysis of day 4 and 7 postpartum milk samples found 36 differentially abundant proteins (P-adj <0.1) in both Oat and YC supplemented sows relative to CON. Notable was increased expression of antimicrobial proteins, lactoferrin and chitinase. IgG in milk of Oat supplemented sows was lower than YC supplemented sows (p<0.05) but had greater E. coli-antigen reactivity. Piglet weights at birth were similar. At weaning YC + Oat piglets weighed less and gained less weight (p<0.05) postweaning than CON. The incidence of PWD was lowest in the YC and Oat groups compared to CON and YC+ Oat groups. These data suggest that Oat or YC culture supplementation alters milk immune and antimicrobial associated proteins that can impact piglets but may have negative effects on piglet growth when given in combination.
2020-12-05 | MSV000086562 | MassIVE
Project description:Prebiotic galactooligosaccharide (GOS) improves piglet growth performance and intestinal health associated with alterations of the hindgut microbiota during the peri-weaning period
Project description:It is increasingly recognised that the gastrointestinal microbiota plays a critical role in human health and promising evidence is accumulating that with dietary strategies, of prebiotic intervention, microbiota imbalances can be corrected and host health improved. Several prebiotics are widely used commercially in foods including inulin, fructo-oligosaccharides, galacto-oligosaccharides and resistant starches and there is convincing evidence, in particular for galacto-oligosaccharides, that prebiotics can modulate the microbiota and promote the growth of bifidobacteria in the intestinal tract of infants and adults. In this study we describe the identification and functional characterisation of the genetic loci responsible for the transport and metabolism of purified galacto-oligosaccharides (PGOS) by our model bifidobacterial strain, B. breve UCC2003. We further demonstrate that the extracellular endogalactanase specified by several B. breve strains, including B. breve UCC2003, is essential for metabolism of PGOS components with a long retention time and high degree of polymerisation. These PGOS components are transported into the bifidobacterial cell via various ABC transport systems and sugar permeases where they are further metabolised to galactose and glucose monomers that feed into the bifid shunt. This research described here advances our understanding of GOS metabolism by bifidobacteria and for the future there is great potential for exploiting bifidobacterial beta-galactosidase to create targeted prebiotics that can enrich for selected Bifiobacteria sp. and other beneficial microbes among the gut microbiota.
Project description:Microbiome analysis has relied largely on metagenomics to characterize microbial populations and predict their functions. Here, we used a TMT LC-MSMS metaproteomic analysis of the fecal microbiome in piglets before and after weaning to compare protein abundances as they pertain to microbial populations specific to either a milk- or plant-based diet. Fecal samples were collected from six piglets on the day of weaning and four weeks after transitioning to a standard nursery diet. Using the 12,554 protein groups identified in samples, we confirmed the shift in protein composition that takes place in response to the microbial succession following weaning and demonstrated the redundancy in metabolic processes between taxa. We identified taxa with roles as primary degraders based on corresponding proteins synthesized, thereby providing evidence for cross-feeding. Proteins associated with the breakdown of milk-specific carbohydrates were common among pre-weaned pigs, whereas the proteome of post-weaned piglets contained a greater abundance of proteins involved in the breaking down plant-specific carbohydrates. Furthermore, output revealed that production of propionate takes place via the propionaldehyde pathway in pre-weaned piglets, but changes to production via the succinate pathway in post-weaned piglets. Finally, a disproportionate quantity of carbohydrate-active enzymes (CAZymes) (~8%) were produced by fungi, which typically only represent ~0.1% of the microbiome taxa. Information gathered through this characterization of the metaproteome before and after weaning revealed important differences regarding the role of members in the microbial community, thereby providing information for the optimization of diets and products for both piglet and microbiome health.
2025-05-26 | PXD063155 | Pride
Project description:Plant extracts alleviate the effects of piglet weaning