Project description:We investigated the genomic landscape of histone modifications in antigen-experienced CD8+ T cells. Using a ChIP-Seq approach coupled with global gene expression profiling [GSE67825], we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in distinct subsets of CD8+ T cells - naïve, stem cell memory, central memory, and effector memory. To gain insight into how histone architecture is remodeled during the differentiation of activated T cells
Project description:Differentiation of CD8+ T lymphocytes into effector and memory cells is key for an adequate immune response and relies on complex interplay of pathways that convey signals from cell surface to nucleus. In this study, we fractionated four CD8+ T cell subtypes; naïve, recently activated effector, effector and memory cells into membrane, cytosol, soluble nucleus, chromatin-bound and cytoskeleton compartments. Using LC-MS/MS analysis, identified peptides were matched to human peptides/proteins (SwissProt). Compartment fractionation and gel-LC-MS separation identified 2399 proteins in total. Among these 735 were detected in all five, 241 in four, 257 in three, 368 in two and 798 found in only one fraction. Comparison between the two most different subsets, naïve and effector, yielded 146 significantly regulated proteins.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Genomewide microarray analysis of murine tolerant, self-antigen specific CD8 T cells to identify genes and pathways underlying peripheral T cell tolerance Gene signature of tolerant CD8 T cells was compared to the signatures of naïve T cells, memory T cells, rescued T cells (=tolerant T cells undergoing homeostatic proliferation in lymphopenic, tolerogenic Alb:GAG mice), and re-tolerized T cells (=previously rescued T cells post homeostatic proliferation isolated from lymphoreplete wild-type B6 mice). Total RNA obtained from various sort-purified transgenic CD8 T cell subsets (naïve, memory, tolerant, rescued, and re-tolerized) isolated from spleens of different host mice
Project description:Different pathogens trigger naïve T cells to express distinct sets of effector proteins. To better understand the molecular mechanisms that drive this functional specification, we used high resolution, label-free mass spectrometry to measure proteomic differences between the seven largest circulating human CD8+ T cell subsets. Unsupervised hierarchical clustering of the proteomes placed naïve and CD45RA-expressing effector-type T cells at the extremes of the spectrum with central-memory and other effector-memory stages located in between. Prominent differences between the subsets included expression of various granzymes, signaling proteins and molecules involved in metabolic regulation. Remarkably, whereas most of the proteomic changes between the subsets were gradual, a small proportion of proteins were regulated only in discrete subsets. The data obtained from this proteome analysis correspond best to a progressive differentiation model in which specific stable traits are gradually acquired during pathogen-specific development.
Project description:The aim was to assess miRNA expression in 3 human ex-vivo CD8+ T cell subsets which span from antigen inexperienced cells (Naïve) to early memory cells (central memory, Tcm) and later stage memory cells (effector memory, Tem) CD8+ T cells were sorted on a FACS Aria II machine. N = naïve = CD8+, CCR7+, CD45RA+, CD45RO-, Tcm = central memory = CD8+, CCR7+, CD45RA-, CD45RO-,Tem= effector memory = CD8+, CCR7-, CD45RA-, CD45RO+
Project description:We investigated the genomic landscape of histone modifications in antigen-experienced CD8+ T cells. Using a ChIP-Seq approach coupled with global gene expression profiling [GSE67825], we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in distinct subsets of CD8+ T cells - naïve, stem cell memory, central memory, and effector memory.
Project description:An early-differentiated CD8+ memory T cell subset with stem cell-like properties (TSCM) can be identified within the naïve-like T cell population by the expression of CD95/Fas. Based on experiments including exon- and gene-level expression analysis, we provide evidence that this subset of antigen-specific cells represents an early precursor of conventional central (TCM) and effector (TEM) memory CD8+ T cells with enhanced self-renewal capacity and proliferative potential. We identified 900 genes differentially expressed between major T cell subsets defined along with memory T cell commitment. Based on the analysis of these genes, CD95+ naïve T cells (TSCM) cluster closer to the CD8+ T memory compartment than to classical (CD95-) naïve T (TN) cells, and display an intermittent phenotype between classical TN and TCM cells in terms of all major T cell differentiation markers analyzed. Three healthy human blood donors provided lymphocyte-enriched apheresis blood for this study after informed consent. From all samples, total RNA was isolated using an RNEasy Micro kit (Qiagen), processed by Ambion’s WT expression kit, fragmented and labeled with a WT Terminal Labeling Kit (Affymetrix), hybridized to WT Human Gene 1.0 ST arrays (Affymetrix) and stained on a Genechip Fluidics Station 450 (Affymetrix), all according to the respective manufacturer's instructions. Samples represent "exon-level" and "gene-level" analyses.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:We report the transcriptional profiles of human lung and lung draining lymph node T cell subsets that were sorted from paired samples. Naïve, central memory, effector memory and tissue resident memory CD4 and CD8 T cell subsets were sorted by FACS. Samples then underwent RNA sequencing to compare the similarities and differences between these T cell subsets and across tissues.