Project description:There is a wide diversity of potential applications for direct electron transfer from electrodes to microorganisms, which might be better optimized if the mechanisms for this novel electrode-biofilm interaction were better understood. Geobacter sulfurreducens is one of the few microorganisms available in pure culture that is known to be capable of directly accepting electrons from a negatively poised electrode. A microarray comparison of cells accepting electrons from the electrode versus cells donating electrons to the electrode reveals that the genes previously observed to be upregulated in current-producing biofilms are not highly expressed in current-consuming biofilms.
Project description:There is a wide diversity of potential applications for direct electron transfer from electrodes to microorganisms, which might be better optimized if the mechanisms for this novel electrode-biofilm interaction were further understood. Geobacter sulfurreducens is one of the few microorganisms available in pure culture that is known to be capable of directly accepting electrons from a negatively poised electrode. Gene transcript abundance in cells of G. sulfurreducens using electrons delivered from a graphite electrode as the sole electron donor for fumarate reduction was compared with transcript abundance in cells growing on the same graphite material, but without an electrical connection and acetate as the electron donor.
2010-11-23 | GSE19149 | GEO
Project description:Functional microorganisms in MEC-AD
Project description:Investigation of comprehensive information about the transcripts (boundary, level, etc.) across the entire G. sulfurreducens genome in mulitple growth conditions, including in biofilm and on electrode. A five array study using total RNA recovered from two separate culture conditions of G. sulfurreducens. G. sulfurreducens were harvested one week after growth on electrode or to form biofilm. The high-density oligonucleotide tiling arrays used consisted of 381,174 oligonucleotide probes spaced 20 bp apart (30-bp overlap between two probes) across the G. sulfurreducens genome (NimbleGen). Experiments were conducted as two (electrode) or three (biofilm) biological replicates (different cultures).