Project description:To obtain further insights into the role of bacterial activity in biochar-based biofiltration systems, the expressed proteins of the bacterial community residing in biofiltration systems were identified by a metaproteomic approach.
Project description:Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholestermic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR), a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB) and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo . Mice (6 to 8 weeks old) were subcutaneously injected saline or 0.2 g/kg chitosan. Chitosan oligosaccharide lactate (MW=4000-6000, >90% deacetylation) was purchased from Sigma-Aldrich (St. Louis, MO, USA) and dissolved in DDW. For rosiglitazone treatment, mice were orally administered 50 mg/kg rosiglitazone. Mice were then imaged for the luciferase activity or sacrificed for microarray analysis at indicated periods.
Project description:We studied the transcriptome changes in tomato against treatment with harpinPss, chitosan nanoparticles (CSNPs), and harpin loaded chitosan nanoparticles (H-CSNPs). We measured and compared the difference in transcript accumulation between treated- and control tomato leaves. Two independent experiments were performed at each time (24 h, 48 h and 72 h).
2018-06-30 | GSE100594 | GEO
Project description:Anaerobic treatment of winery wastewater assisted by booster materials
Project description:Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholestermic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR), a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB) and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo .
Project description:To understand microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs) and the effects of environmental factors on their structure, 12 activated sludge samples were collected from four WWTPs in Beijing. GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes. The results showed that, for each gene category, such as egl, amyA, nir, ppx, dsrA sox and benAB, there were a number of microorganisms shared by all 12 samples, suggestive of the presence of a core microbial community in the activated sludge of four WWTPs. Variance partitioning analyses (VPA) showed that a total of 53% of microbial community variation can be explained by wastewater characteristics (25%) and operational parameters (23%), respectively. This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs. Four full-scale wastewater treatment systems located in Beijing were investigated. Triplicate samples were collected in each site.
Project description:Current protection strategies against the fungal pathogen Botrytis cinerea rely on a combination of conventional fungicides and host genetic resistance. Defence elicitors can stimulate plant defence mechanisms through a phenomenon known as priming. Priming results on a faster and/or stronger expression of resistance upon pathogen attack. This work aims to study priming of a commercial formulation of the elicitor Chitosan. Treatments with Chitosan result in induced resistance in solanaceous and brassicaceous plants. Large-scale transcriptomic analysis in this study revealed that Chitosan primes gene expression at early time-points after infection. Four conditions were analysed using microarrays: (i) water-treated and non-infected plants (Water + Mock); (ii) Chitosan-treated and non-infected plants (Chitosan + Mock); (iii) water-treated and B. cinerea-infected plants (Water + B. cinerea); (iv) Chitosan-treated and B. cinerea-infected plants (Chitosan + B. cinerea). Inoculations were performed four days after treatment with Chitosan, and leaf discs from four independent plants (biological replicates) per treatment were sampled at 6 h, 9 h and 12 h post-inoculation (hpi) with water mock or B. cinerea spores.
Project description:A mutant of SG511 (wild type isolate), resistant to the presence of chitosan (polycationic molecule) was obtained following serial passage experiments resistance to chitosan exposition. Transcriptomic experiments showed alteration in the expression of genes involved in the cell wall regulon resulting in the modification of susceptibility phenotype against cell wall active antibiotics