Project description:Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood. This study examined transcriptomic and microbiome changes in shallow-water mussels Mytilus galloprovincialis exposed to deep-sea conditions at the Site-F cold seep in the South China Sea. Results reveal complex gene expression adjustments in stress response, immune defense, homeostasis, and energy metabolism pathways during adaptation. After 10 days of deep-sea exposure, shallow-water mussels and their microbial communities closely resembled those of native deep-sea mussels, demonstrating host and microbiome convergence in response to adaptive shifts. Notably, methanotrophic bacteria, key symbionts in native deep-sea mussels, emerged as a dominant group in the exposed mussels. Host genes involved in immune recognition and endocytosis correlated significantly with the abundance of these bacteria. Overall, our analyses provide insights into adaptive transcriptional regulation and microbiome dynamics of mussels in deep-sea environments, highlighting the roles of conserved genes and microbial community shifts in adapting to extreme environments.
Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.
Project description:Bacteria isolated from diverse environments were found to sense blue light to regulate their biological functions. However, this ability of deep-sea bacteria has been studied rarely. In this study, we found serendipitously that blue light stimulated excess zero-valent sulfur (ZVS) production of E. flavus 21-3, which was isolated from the deep-sea cold seep and possessed a novel thiosulfate oxidation pathway. Its ZVS production responding to the blue light was mediated by a light-oxygen-voltage histidine kinase (LOV-1477), a diguanylate cyclase (DGC-2902), a PilZ protein (mPilZ-1753) and the key thiosulfate dehydrogenase (TsdA) in its thiosulfate oxidation pathway. Subsequently, the thiosulfohydrolase (SoxB-277) was found working with another SoxB (SoxB-285) and being as substitute for each other to generate ZVS. This study provided an example of deep-sea bacteria sensing blue light to regulate thiosulfate oxidation. Deep-sea blue light potentially helped these blue-light-sensing bacteria adapt harsh conditions by diversifying their biological processes.
Project description:Colonization of deep-sea hydrothermal vents by invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers of these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts on the deep-sea mussel Bathymodiolus azoricus’ molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels
2019-02-13 | GSE124699 | GEO
Project description:Metagenomics Study of Deep Sea Bacteria
Project description:Microbially influenced corrosion (MIC) poses a major threat to metal structures across various industries, resulting in substantial economic losses and environmental risks. As deep-sea exploration expands, understanding MIC under high hydrostatic pressure becomes increasingly critical. Microorganisms in these extreme environments undergo distinct structural and metabolic adaptations to survive and thrive. In this study, we employed a proteomic approach to examine the lifestyle and corrosive potential of two sulfate-reducing bacteria (SRB) species with different pressure optima under simulated depths ranging from the sea surface to 3000 meters. Species-specific corrosion mechanisms and unique proteomic signatures associated with pressure adaptation were identified, correlating with opposing trends in corrosion rates. Our findings emphasize the need to characterize microbial physiology in relation to environmental conditions to better predict corrosion risks in extreme deep-sea settings.
Project description:Microbially influenced corrosion (MIC) poses a major threat to metal structures across various industries, resulting in substantial economic losses and environmental risks. As deep-sea exploration expands, understanding MIC under high hydrostatic pressure becomes increasingly critical. Microorganisms in these extreme environments undergo distinct structural and metabolic adaptations to survive and thrive. In this study, we employed a proteomic approach to examine the lifestyle and corrosive potential of two sulfate-reducing bacteria (SRB) species with different pressure optima under simulated depths ranging from the sea surface to 3000 meters. Species-specific corrosion mechanisms and unique proteomic signatures associated with pressure adaptation were identified, correlating with opposing trends in corrosion rates. Our findings emphasize the need to characterize microbial physiology in relation to environmental conditions to better predict corrosion risks in extreme deep-sea settings.
Project description:Despite the fact that deep sea mining is becoming more popular nowadays in terms of obtaining metals ores for daily life purposes, its potential impact to the deep sea habitat, which is originally stable and converse, stills remains uncertain. In order to estimate and regulate the imapct of deep sea mining activities, an in-situ exposure experiment is performed to observe the change in proteomics expression of the deep-sea scvangers, Abyssorchomene distinctus, to copper exposure. This project aims to suggest a potenial protein bio-marker in Abyssorchomene distinctus to assess the impact of mining activities towards deep sea organisms and also discuss the potential application of other deep sea in-situ exposure experiment in the future.