ABSTRACT: Iron-Bearing Natural Minerals Maifanite and Limonitum Drive Sulfur-based Autotrophic Denitrification Enhancement and Electron Recycling via Sulfide
Project description:Engineered iron-sulfur carriers for efficient mixotrophic and sulfur autotrophic denitrification in low carbon to nitrogen ratio municipal wastewater: mechanisms of biofilm enhancement and electron transfer promotion
Project description:Methanogens inhabit euxinic (sulfide-rich) or ferruginous (iron-rich) environments that promote the precipitation of transition metals as metal sulfides, such as pyrite, reducing metal or sulfur availability. Such environments have been common throughout Earth’s history raising the question as to how anaerobes obtain(ed) these elements for the synthesis of enzyme cofactors. Here, we show a methanogen can synthesize molybdenum nitrogenase metallocofactors from pyrite as the source of iron and sulfur, enabling nitrogen fixation. Pyrite-grown, nitrogen-fixing cells grow faster and require 25-fold less molybdenum than cells grown under euxinic conditions. Growth yields are 3 to 8 times higher in cultures grown under ferruginous relative to euxinic conditions. Physiological, transcriptomic, and geochemical data indicate these observations are due to sulfide-promoted metal limitation, in particular molybdenum. These findings suggest that molybdenum nitrogenase may have originated in a ferruginous environment that titrated sulfide to form pyrite, facilitating the availability of sufficient iron, sulfur, and molybdenum for cofactor biosynthesis.
Project description:Iron-sulfur minerals such as pyrite are found in many marine benthic habitats. At deep-sea hydrothermal vent sites they occur as massive sulfide chimneys. Hydrothermal chimneys formed by mineral precipitation from reduced vent fluids upon mixing with cold oxygenated sea water. While microorganisms inhabiting actively venting chimneys and utilizing reduced compounds dissolved in the fluids for energy generation are well studied, only little is known about the microorganisms inhabiting inactive sulfide chimneys. We performed a comprehensive meta-proteogenomic analysis combined with radiometric dating to investigate the diversity and function of microbial communities found on inactive sulfide chimneys of different ages from the Manus Basin (SW Pacific). Our study sheds light on potential lifestyles and ecological niches of yet poorly described bacterial clades dominating inactive chimney communities.
Project description:(from abstract): Iron oxidation is a desirable trait of biomining microorganisms, although the mechanism is not well-understood in extreme thermoacidophiles. The complete genome sequence of the extremely thermoacidophilic archaeon Metallosphaera sedula DSM 5348 (2.2 Mb, ~2300 ORFs) provides insights into biologically catalyzed metal sulfide oxidation. Comparative genomics was used to identify pathways and proteins (in)directly involved with bioleaching. As expected, the M. sedula genome encodes genes related to autotrophic carbon fixation, metal tolerance, and adhesion. Also, terminal oxidase cluster organization indicates the presence of hybrid quinol-cytochrome oxidase complexes. Comparisons with the mesophilic biomining bacterium Acidithiobacillus ferrooxidans ATCC 23270 indicate that the M. sedula genome encodes at least one putative rusticyanin, involved in iron oxidation. The fox gene cluster, involved in iron oxidation in the thermoacidophilic archaeon Sulfolobus metallicus, could also be identified. These iron-oxidizing components are missing from genomes of non-leaching Sulfolobales like Sulfolobus solfataricus P2 and Sulfolobus acidocaldarius DSM 639. Whole genome transcriptional response analysis showed that 88 ORFs were up-regulated 2-fold or more in M. sedula upon addition of ferrous sulfate to yeast extract-based medium; these included components of terminal oxidase clusters predicted to be involved with iron oxidation, as well as genes predicted to be involved with sulfur metabolism. Many hypothetical proteins were also differentially transcribed, indicating that aspects of the iron and sulfur metabolism of M. sedula remain to be identified and characterized. Keywords: substrate response
Project description:Transcriptomic study of A. ferrooxidans was explored either during aerobic growth with sulfur as an electron source and oxygen as final electron acceptor or in anaerobic conditions with ferric iron as the final electron receptor. Differential RNA levels were related to changes in cellular functions that were used to develop a preliminary model for A. ferrooxidans electron transport during dissimilatory ferric iron reduction.