Project description:Fescue toxicosis is a disease of wild and domestic animals grazing on fescue pasture infected with the endophytic fungus, Neotyphodium Coenophialum. Mice, previously selected for increased sensitivity to endophyte-infected fescue seed diets indicated by slow weight gain, were used to study the effects of fescue toxicosis on hepatic gene expression. Liver genes differentially expressed due to fescue toxins were studied using DNA microarray. A two-stage ANOVA of microarray data identified forty differentially expressed genes between mice fed endophyte-infected (E+) and endophyte-free (E-) fescue seeds. Significant Analysis of Microarray (SAM) analysis identified 9 genes as differentially expressed between treatment groups. Hierarchical clustering with the 40 genes identified by ANOVA clearly separate the mice according to their diets, with 100% confidence as computed by bootstrap analysis. Expressions of eleven genes were verified using quantitative real-time PCR (qPCR). The E+ diet resulted in downregulation of genes involved in sex-steroid metabolism pathway, genes involved in cholesterol and lipid metabolism. Keywords = Endophyte Keywords = Fescue Toxicosis Keywords = microarray Keywords: repeat sample
Project description:The objectives of our study were to identify microRNA (miRNA) present in bovine sperm and to evaluate the effects of fescue toxicosis on sperm miRNA expression.
Project description:The objective of our study was to assess the effect of fescue toxicosis on the overall transcriptomics profile of liver tissue on growing Angus × Simmental steers and heifers. The susceptibility was determined by the T-snip genetic tests for a total of 42 pregnant cows. At mid-gestation, these animals were randomly assigned to control group which received a based diet and fed endophyte free fescue seeds; a treatment group was fed endophyte-infected tall fescue seeds for 30 days. RNA-seq experiments were performed in liver biopsy samples, and a total of 828 differentially expressed genes were detected.
Project description:The objectives of our study were to identify microRNA (miRNA) present in bovine sperm and to evaluate the effects of fescue toxicosis on sperm miRNA expression. Angus bulls were assigned to treatments of either toxic or non-toxic fescue seed diets. Semen was collected and subjected to microRNA (miRNA) isolation after 126 days. Three bull's sperm miRNA samples from each treatment group were chosen and pooled for deep sequencing. Sequencing results were used to create a custom microarray for miRNA comparison between groups. LC Sciences was used as a service provider for the sequencing and custom microarray.
Project description:Fescue toxicosis affects wild and domestic animals consuming ergot alkaloids contained in tall fescue forage infected with the endophytic fungus, Neotyphodium coenophialum. , When animals are consuming infected fescue forage during periods of elevated ambient temperatures (summer), a range of phenotypic disorders collectively called summer slump is observed. It is characterized by hyperthermia, with an accompanying decrease in feed intake, growth, milk yield and reproductive fitness. Laboratory mice also exhibit symptoms of fescue toxicosis a thermoneutral temperature, as indicated by reduced growth rate and reproductive fitness. Our goal was to characterize the differences in gene expression in liver of mice exposed to summer-type heat stress (HS) and infected fescue (E+) when compared to mice fed infected fescue at thermoneutral temperature (TN). Mice were fed E+ diet under HS (34 ± 1°C; n = 13; E+HS) or thermoneutral (TN) conditions (24 ± 1°C; n = 14; E+TN) for a period of two weeks between 47 to 60 d of age. Genes differentially expressed between E+HS versus E+TN were identified using DNA microarrays. Forty-one genes were differentially expressed between treatment groups. Expressions of eight genes were measured using quantitative real-time PCR. Genes coding for phase I detoxification enzymes were up-regulated in E+HS mouse liver. This detoxification pathway is known to produce reactive oxidative species. We observed an up-regulation of genes involved in the protection against reactive oxidative species. Key genes involved in de novo lipogenesis and lipid transport were also up-regulated. Finally, genes involved in DNA damage control and unfolded protein responses were down-regulated. Keywords: Stress response
2006-08-29 | GSE5642 | GEO
Project description:Integrative interactomics applied to Bovine Fescue Toxicosis
Project description:Neotyphodium coenophialum is an endophytic fungus that infects most tall fescue (Festuca arundinacea) pastures that are commonly used in animal grazing systems in the United States. Beef cattle grazing such pastures are impaired in health and production performance, resulting in a large economic loss in US food-animal production systems. Based on the clinical symptoms and laboratory analyses of blood, it was hypothesized that such affected cattle display liver-specific changes in the expression of gene transcripts that are associated with the metabolic enzymes and transporters critical for beef health and performance. Microarray analysis using the GeneChip Bovine Genome Array (Affymetrix, Inc., Santa Clara, CA) was conducted to determine if grazing endophyte-infected tall fescue pastures affects the liver gene expression profiles of growing beef steers. Nineteen steers were assigned to graze either a low toxic endophyte tall fescue-mixed grass (LE treatment, 5.7 ha, n = 9) or a high toxic endophyte infected tall fescue (HE treatment, 5.7 ha, n = 10) pasture located in the University of Kentucky Agricultural Research Center. All steers had ad libitum access to fresh water and an industry standard mineral-vitamin supplement. 88 days grazing on pasture. Approximately 2 g of tissue from the right lobe of the liver of each steer were collected for RNA extraction and microarray analysis.