Project description:We conducted a culture experiment by deeply submerging plants in swine wastewater in culturing Iris tectorum and co-culturing Iris tectorum and Dictyosphaerium sp., and found that the plants grew sub-normal in the plant-microalgae co-culture while the plants were dead after 21 days in the plant culture. We generated a comprehensive RNA-seq dataset from the submerged Iris tectorum leaves in both the plant culture and the plant-microalgae co-culture, aiming at providing information on the response mechanisms of the plants to waterlogging stress. Besides raw reads of the RNA-seq dataset, we used DEseq2 algorithms to detect the differently expressed genes in the plants between the different cultures. Additionally, we performed the plant disease resistance gene analysis for all the differentially expressed genes.
Project description:Here, we performed deep transcriptome sequencing for the aerial-tissues and the roots of S. japonica, generating over 2 billion raw reads with an average length of 101 nt by using an Illumina paired-end sequencing by HiSeq2000 platform. Using a combined approach of three popular assemblers, de novo transcriptome assembly for S. japonica was obtained, yielding in 81,729 unigenes with an average length as 884bps and N50-value as 1,452bps, with 46,963 unigenes being annotated based on the sequence similarity against NCBI-nr protein database.
Project description:The human iris tissue is a thin, circular structure in the eye and it is made up of a pigmented epithelial structure. It is a protected internal organ of the eye, located behind the cornea and the aqueous humour. Iris serves main function to control the diameter, size of the pupil and regulation of light exposure to the internal eye structures. Damage or absent iris always results in allowing excess amount of light into the eye which causes medical problem for the patient and also a psychological problem due to strange eye with black hole. A damaged or congenitally defective iris does not function well which results in poor quality of vision. Although different efforts have been made to elucidate the different parts of the human eye proteome in depth, the protein composition of the human iris tissue remains largely unexplored. We have performed a comprehensive analysis of the human iris tissue employing protein and peptide fractionation methods followed by LC-MS/MS identifying 4918 proteins. Bioinformatics analysis revealed that protein components of the iris tissue participated in a plethora of biological process highlighting cell signal transduction, communication, metabolism, energy pathways protein metabolism cell growth and maintenance, transport and immune response activities. We also compared the proteins of iris tissue with high throughput studies on other parts of eye and plasma proteome, which resulted in identifying proteins unique to iris. To our knowledge, this study is the first attempt to profile the global proteome of the human iris tissue. Taken together, these results increase our knowledge about the molecular composition of the human iris tissue and may be useful to understand the molecular basis of the iris and the baseline proteome described in this study should serve as a resource for future research in iris tissue