Project description:To elucidate alterations in intestinal cell types under chronic stress, we conducted scRNA-seq analysis of intestinal crypts from NT and ES models. After that, we found that significant changes in ISCs in the ES group compared to the NT group. To validate the functional roles of ISCs, we performed RNA-seq of ISCs under different treatment conditions, we identified Chrm3-dependent differential genes between NT and ES groups, particularly noting downregulated genes associated with stemness and proliferation (e.g., Olfm4, Lgr5, and Mcm4), and upregulated genes linked to aging and calcium signaling pathways (e.g., Cdkn1a, Orai1, and Chp2), which contribute to ISC aging. These findings provided mechanistic insights into targeting these pathways to enhance intestinal function and integrity. Furthermore, to assess the impact of stress-induced changes in microbiota composition on ISC stemness, we synchronized microbiota between NT and ES groups through co-housing conditions and employed 16S rDNA sequencing. This analysis aimed to ascertain the possibility that changes in the microbiota composition whether contribute to the decline in ISC stemness under stress conditions. scRNA-seq of crypts were used to to characterize the diversity of cell lines under chronic stress. RNA-seq of ISC in Chrm3Lgr5+/+ and Chrm3Lgr5-/- mice from NT and ES mice were taken to delineate altered pathways and the mechanisms underlying ISC changes in ES model. 16S rDNA-seq (available in PRJNA1090629) were employed to confirm microbiota synchronization between NT and ES groups under co-housing conditions.
Project description:To elucidate alterations in intestinal cell types under chronic stress, we conducted scRNA-seq analysis of intestinal crypts from NT and ES models. After that, we found that significant changes in ISCs in the ES group compared to the NT group. To validate the functional roles of ISCs, we performed RNA-seq of ISCs under different treatment conditions, we identified Chrm3-dependent differential genes between NT and ES groups, particularly noting downregulated genes associated with stemness and proliferation (e.g., Olfm4, Lgr5, and Mcm4), and upregulated genes linked to aging and calcium signaling pathways (e.g., Cdkn1a, Orai1, and Chp2), which contribute to ISC aging. These findings provided mechanistic insights into targeting these pathways to enhance intestinal function and integrity. Furthermore, to assess the impact of stress-induced changes in microbiota composition on ISC stemness, we synchronized microbiota between NT and ES groups through co-housing conditions and employed 16S rDNA sequencing. This analysis aimed to ascertain the possibility that changes in the microbiota composition whether contribute to the decline in ISC stemness under stress conditions. scRNA-seq of crypts were used to to characterize the diversity of cell lines under chronic stress. RNA-seq of ISC in Chrm3Lgr5+/+ and Chrm3Lgr5-/- mice from NT and ES mice were taken to delineate altered pathways and the mechanisms underlying ISC changes in ES model. 16S rDNA-seq were employed to confirm microbiota synchronization between NT and ES groups under co-housing conditions.
Project description:Prostate of SD rats was injected with 0.1 ml 1% carrageenan to induce chronic nonbacterial prostatitis, and the control rats injected with sterile saline. Then, the cecal contents were collected for 16S rDNA sequencing.
Project description:4C procedure was used for analysis of genomic contacts of rDNA units in HEK 293T cells. The primers for 4C were selected inside IGS. Our data indicate that mostly rDNA units exhibit close proximity with pericentromeric regions in different chromosomes. We also detected the contacts within a rDNA unit and between rDNA units. Examination of rDNA genome-wide contacts in HEK 293T cells using 4C approach.
Project description:Antisense peptide nucleic acids (PNAs) inhibiting mRNAs of essential genes provide a straight-forward way to repurpose our knowledge of bacterial regulatory RNAs for development of programmable species-specific antibiotics. While there is ample proof of PNA efficacy, their target selectivity and impact on bacterial physiology are poorly understood. Moreover, while antibacterial PNAs are typically designed to block mRNA translation, effects on target mRNA levels are not well-investigated. Here, we pioneer the use of global RNA-seq analysis to decipher PNA activity in a transcriptome-wide manner. We find that PNA-based antisense oligomer conjugates robustly decrease mRNA levels of the widely-used target gene, acpP, in Salmonella enterica, with limited off-target effects. Systematic analysis of several different PNA-carrier peptides attached not only shows different bactericidal efficiency, but also activation of stress pathways. In particular, KFF-, RXR- and Tat-PNA conjugates especially induce the PhoP/Q response, whereas the latter two additionally trigger several distinct pathways. We show that constitutive activation of the PhoP/Q response can lead to Tat-PNA resistance, illustrating the utility of RNA-seq for understanding PNA antibacterial activity. In sum, our study establishes an experimental framework for the design and assessment of PNA antimicrobials in the long-term quest to use these for precision editing of microbiota.
Project description:4C procedure was used for analysis of genomic contacts of rDNA units in HEK 293T cells. The primers for 4C were selected inside IGS. Our data indicate that mostly rDNA units exhibit close proximity with pericentromeric regions in different chromosomes. We also detected the contacts within a rDNA unit and between rDNA units.