Project description:Light is a major environmental factor that affects metabolic pathways and stimulates the production of secondary metabolites in potato. However, adaptive changes in potato metabolic pathways and physiological functions triggered by light are partly explained by gene expression changes. Regulation of secondary metabolic pathways in potato has been extensively studied at transcriptional level, but little is known about the mechanisms of post-transcriptional regulation by miRNAs. To identify light-responsive miRNAs/mRNAs and construct putative metabolism pathways regulated by the miRNA-mRNA pairs, an integrated omics (sRNAome and transcriptome) analysis was performed to potato under light stimulus. A total of 31 and 48 miRNAs were identified to be differentially expressed in the leaves and tubers, respectively. Among the DEGs, 1353 genes in the leaves and 1841 genes in the tubers were upregulated, while 1595 genes in the leaves and 897 genes in the tubers were downregulated by light. Mapman enrichment analyses showed that genes related to MVA pathway, alkaloids-like, phenlypropanoids, flavonoids, and carotenoids metabolism were significantly upregulated, while genes associated with major CHO metabolism were repressed in the leaves and tubers. Integrated miRNA and mRNA profiles revealed that light-responsive miRNAs are important regulators in alkaloids metabolism, UMP-salvage, lipid biosynthesis, and cellulose catabolism. Moreover, several miRNAs may participate in glycoalkaloids metabolism via JA signaling pathway, UDP-glucose biosynthesis and hydroxylation reaction. This study provides a global view of transcriptome response in potato response to light, our results suggest that miRNAs might play important roles in secondary metabolic pathways, especially in glycoalkaloid biosynthesis. The findings will enlighten us on the genetic regulation of secondary metabolite pathways and pave the way for future application of genetically engineered potato.
Project description:Transcriptome sequencing was performed to reveal the physiological changes of potato tubers after injury at the transcriptome level
Project description:Effects of different parameters on the transcriptome in potato tuber: effect of infection with potato virus Y (PVY) on potato tubers, effects of two different storage times of potato tubers compared to no storage, effect of different storage temperature on potato tubers, effect of tuber necrosis development, effects of interactions between the above parameters. Lists of interaction factors and the differentially-expressed genes associated with each factor are provided as a series of Additional Files to this submission (see http://www.ebi.ac.uk/arrayexpress/files/E-MTAB-1071).
Project description:Potato, S. tuberosum, is one of the most important global crops, but has high levels of waste due to tuber greening under light, which is associated with the accumulation of neurotoxic glycoalkaloids. Here, we have investigated the effect of monochromatic far-red, red, and blue light on the regulation of chlorophyll and glycoalkaloid accumulation in tubers of a commercial variety, King Edward. Transcriptomic analysis of tubers exposed to red, blue, and white light showed that light induction of photosynthesis and tetrapyrrole-related genes grouped into two distinct patterns with one group showing much stronger induction in blue at 6 h and 24 h and a second group showing only red induction at 24 h.
Project description:Light is a major environmental factor that affects metabolic pathways and stimulates the production of secondary metabolites in potato. However, adaptive changes in potato metabolic pathways and physiological functions triggered by light are partly explained by gene expression changes. Regulation of secondary metabolic pathways in potato has been extensively studied at transcriptional level, but little is known about the mechanisms of post-transcriptional regulation by miRNAs. To identify light-responsive miRNAs/mRNAs and construct putative metabolism pathways regulated by the miRNA-mRNA pairs, an integrated omics (sRNAome and transcriptome) analysis was performed to potato under light stimulus. A total of 31 and 48 miRNAs were identified to be differentially expressed in the leaves and tubers, respectively. Among the DEGs, 1353 genes in the leaves and 1841 genes in the tubers were upregulated, while 1595 genes in the leaves and 897 genes in the tubers were downregulated by light. Mapman enrichment analyses showed that genes related to MVA pathway, alkaloids-like, phenlypropanoids, flavonoids, and carotenoids metabolism were significantly upregulated, while genes associated with major CHO metabolism were repressed in the leaves and tubers. Integrated miRNA and mRNA profiles revealed that light-responsive miRNAs are important regulators in alkaloids metabolism, UMP-salvage, lipid biosynthesis, and cellulose catabolism. Moreover, several miRNAs may participate in glycoalkaloids metabolism via JA signaling pathway, UDP-glucose biosynthesis and hydroxylation reaction. This study provides a global view of transcriptome response in potato response to light, our results suggest that miRNAs might play important roles in secondary metabolic pathways, especially in glycoalkaloid biosynthesis. The findings will enlighten us on the genetic regulation of secondary metabolite pathways and pave the way for future application of genetically engineered potato.
Project description:Commercial storage of potatoes often relies on the use of sprout inhibitors to prolong storage and reduce spoilage. The compound 1,4-dimethylnaphthalene (DMN) has seen increase application as a sprout inhibitor in the potato industry as older chemistries are being phased out. The mode of action of DMN is poorly understood as is the sensitivity of potato tissues to this new class of inhibitor. During storage potato tubers transition from a state of endo-dormant to eco-dormant and it is not known if the DMN response is consistent across this developmental transition. RNA-seq gene expression profiling was used to establish if stored potato tubers (Solanum tuberosum cv La Chipper) have differential sensitivity to DMN as tubers age. DMN was applied at three different times during storage; just after harvest when tubers are in endo-dormancy, midwinter at early eco-dormancy, and in spring during late eco-dormancy when sprouting was prevented via exposure to cold storage temperatures. Changes in gene expression were lowest during endo-dormancy while midwinter and spring treatments exhibited a greater and more diverse expression response. Functional analysis of differential gene expression demonstrated gene sets associated with DNA replication, cell division, and DNA methylation are suppressed after DMN treatment. However, gene sets associated with salicylic acid, jasmonic acid, abiotic and biotic stress responses are elevated by DMN only after endodormancy terminates. Gene clusters associated with pathogenesis related proteins PR-4 and PR-5 are also upregulated in response to DMN. These results indicate that DMN sensitivity changes as potato tubers age and transition from endo-dormant to eco-dormant in storage and the overall response is a shift in gene classes that regulate growth and response to stress.
Project description:Commercial storage of potatoes often relies on the use of sprout inhibitors to prolong storage and reduce spoilage. The compound 1,4-dimethylnaphthalene (DMN) has seen increase application as a sprout inhibitor in the potato industry as older chemistries are being phased out. The mode of action of DMN is poorly understood as is the sensitivity of potato tissues to this new class of inhibitor. During storage potato tubers transition from a state of endo-dormant to eco-dormant and it is not known if the DMN response is consistent across this developmental transition. RNA-seq gene expression profiling was used to establish if stored potato tubers (Solanum tuberosum cv La Chipper) have differential sensitivity to DMN as tubers age. DMN was applied at three different times during storage; just after harvest when tubers are in endo-dormancy, midwinter at early eco-dormancy, and in spring during late eco-dormancy when sprouting was prevented via exposure to cold storage temperatures. Changes in gene expression were lowest during endo-dormancy while midwinter and spring treatments exhibited a greater and more diverse expression response. Functional analysis of differential gene expression demonstrated gene sets associated with DNA replication, cell division, and DNA methylation are suppressed after DMN treatment. However, gene sets associated with salicylic acid, jasmonic acid, abiotic and biotic stress responses are elevated by DMN only after endodormancy terminates. Gene clusters associated with pathogenesis related proteins PR-4 and PR-5 are also upregulated in response to DMN. These results indicate that DMN sensitivity changes as potato tubers age and transition from endo-dormant to eco-dormant in storage and the overall response is a shift in gene classes that regulate growth and response to stress.
Project description:To extend our understanding of systemic necrosis in susceptible potato tubers infected with the necrotic strain of Potato virus Y (PVYNTN) gene expression was compared between healthy and infected non-necrotic and necrotic (both non-necrotic and necrotic tissue) potato tubers.
Project description:The anthocyanin glycosides in potato tubers not only provide the plant with bright color and high nutritional value, but also have pharmacological effects such as antioxidant, hypotensive, lipid-lowering and immunity-boosting. However, the regulatory mechanism of anthocyanin in potato tubers is still unclear. In this study, twelve miRNA libraries, three of which are from the Red beauty (R-1, R-2 and R-3), three of which are from the Black kingkong (B-1, B-2 and B-3), three of which are from the Longshu No.7 (Y-1, Y-2 and Y-3) and three of which are from the LK77 (W-1, W-2 and W-3), were constructed and analyzed by high-throughput sequencing. A total of 167.3 M of clean reads were obtained. After the raw reads were subjected to quality control and filtering, 151,010,820 clean tags were obtained from the twelve libraries. The filtered reads were subsequently compared with the updated potato reference genome, and the vast majority of effective reads were successfully mapped. The mapped reads from the twelve libraries covered 77.10-84.48% of the potato genome, therefore, the analysis based on the genome was considered reliable. The lengths of the obtained miRNAs were further analysed to find that 64% of the miRNAs were concentrated at 21bp in length, followed by a higher number of miRNAs at 22bp and 24bp in length.