Project description:Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene invertebrate. Fossils of the Caribbean stony coral Orbicella annularis retain total hydrolyzable amino acids of a similar composition to extracts from modern O. annularis skeletons and ~10% of the modern skeletal proteome was sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. The data are rich in acidic amino acids such as aspartate and glutamate typical of skeletal proteins, and one of the four sequenced fossil proteins, a highly acidic protein, has been previously characterized in modern coral skeletons. A combination of degradation, or amino acid racemization inhibition of trypsin digestion, appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic mand biotic responses to paleoenvironments.
Project description:The surprising observation that virtually the entire human genome is transcribed means we know very little about the function of many emerging classes of RNAs, except their astounding diversity. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their ability to classify classes of non-coding RNAs (ncRNAs). To address this, we developed CoRAL, a machine learning-based approach for classification of RNA molecules. CoRAL uses biologically interpretable features including fragment length, cleavage specificity, and antisense transcription to distinguish between different ncRNA classes. We evaluated CoRAL using genome-wide small RNA sequencing (smRNA-seq) datasets from two human tissue types (brain and skin [GSE31037]), and were able to classify six different types of RNA transcripts with 79~80% accuracy in cross-validation experiments, and with 71~73% accuracy when CoRAL uses one tissue type for training and the other as validation. Analysis by CoRAL revealed that long intergenic ncRNAs, small cytoplasmic RNAs, and small nuclear RNAs show more tissue specificity, while microRNAs, small nucleolar, and transposon-derived RNAs are highly discernible and consistent across the two tissue types. The ability to consistently annotate loci across tissue types demonstrates the potential of CoRAL to characterize ncRNAs using smRNA-seq data in less characterized organisms.
Project description:Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene invertebrate. Fossils of the Caribbean stony coral Orbicella annularis retain total hydrolyzable amino acids of a similar composition to extracts from modern O. annularis skeletons and ~10% of the modern skeletal proteome was sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. The data are rich in acidic amino acids such as aspartate and glutamate typical of skeletal proteins, and one of the four sequenced fossil proteins, a highly acidic protein, has been previously characterized in modern coral skeletons. A combination of degradation, or amino acid racemization inhibition of trypsin digestion, appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments.
Project description:Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene invertebrate. Fossils of the Caribbean stony coral Orbicella annularis retain total hydrolyzable amino acids of a similar composition to extracts from modern O. annularis skeletons and ~10% of the modern skeletal proteome was sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. The data are rich in acidic amino acids such as aspartate and glutamate typical of skeletal proteins, and one of the four sequenced fossil proteins, a highly acidic protein, has been previously characterized in modern coral skeletons. A combination of degradation, or amino acid racemization inhibition of trypsin digestion, appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments.
Project description:Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene invertebrate. Fossils of the Caribbean stony coral Orbicella annularis retain total hydrolyzable amino acids of a similar composition to extracts from modern O. annularis skeletons and ~10% of the modern skeletal proteome was sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. The data are rich in acidic amino acids such as aspartate and glutamate typical of skeletal proteins, and one of the four sequenced fossil proteins, a highly acidic protein, has been previously characterized in modern coral skeletons. A combination of degradation, or amino acid racemization inhibition of trypsin digestion, appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments.
Project description:Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene invertebrate. Fossils of the Caribbean stony coral Orbicella annularis retain total hydrolyzable amino acids of a similar composition to extracts from modern O. annularis skeletons and ~10% of the modern skeletal proteome was sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. The data are rich in acidic amino acids such as aspartate and glutamate typical of skeletal proteins, and one of the four sequenced fossil proteins, a highly acidic protein, has been previously characterized in modern coral skeletons. A combination of degradation, or amino acid racemization inhibition of trypsin digestion, appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments.
Project description:Here we report the first recovery, sequencing, and identification of fossil biomineral proteins from a Pleistocene invertebrate. Fossils of the Caribbean stony coral Orbicella annularis retain total hydrolyzable amino acids of a similar composition to extracts from modern O. annularis skeletons and ~10% of the modern skeletal proteome was sequenced by LC-MS/MS over multiple trials in the best-preserved fossil coral specimen. The data are rich in acidic amino acids such as aspartate and glutamate typical of skeletal proteins, and one of the four sequenced fossil proteins, a highly acidic protein, has been previously characterized in modern coral skeletons. A combination of degradation, or amino acid racemization inhibition of trypsin digestion, appears to limit greater recovery. Nevertheless, our workflow determines optimal samples for effective sequencing of fossil coral proteins, allowing comparison of modern and fossil invertebrate protein sequences, and will likely lead to further improvements of the methods. Sequencing of endogenous organic molecules in fossil biominerals provides an ancient record of composition, potentially clarifying evolutionary changes and biotic responses to paleoenvironments.