Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to examined functional gene structure of microbes in three biomes, including boreal, temperate and tropical area.
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to investigate spring microbial functional genes in mesocosm-simulated shallow lake ecosystems having been undergoing nutrient enrichment and warming for nine years.
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to examined functional gene structure of microbes in four lakes at low and high elevations of approximately 530 and 4,600 m a.s.l., respectively.
Project description:Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part, by inducing production of damaging reactive species. This notion has been supported by many groups, but recently challenged. Here we robustly test the hypothesis using biochemical, enzymatic and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular hydrogen peroxide (H2O2) sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species, to demonstrate that antibiotics broadly induce redox stress. Subsequent gene expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supra-physiological levels of H2O2. We next developed a method to dynamically quantify cellular respiration and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that catalase or DNA mismatch repair enzyme overexpression, as well as antioxidant pre-treatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions, but could be enhanced by exposure to molecular oxygen or addition of alternative electron acceptors, suggesting that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that bactericidal antibiotics, downstream of their target-specific interactions, induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. Here, we used microarrays to analyze oxidative stress responses to bactericidal antibiotic treatment in wildtype and mutant E coli WT or mutant E coli cells were grown to OD ~0.3. Untreated cells were harvested at time 0 as controls. Treated cells given the appropriate chemical perturbation and harvested 1 hour post-treatment. All experiments were performed in technical triplicate.
Project description:We sought to determine how a cystic fibrosis isolate of Stenotrophomonas maltophilia responds to relevant pH gradients (pH 5, 7, and 9) by growing the bacterium in phosphate buffered media and conducting RNAseq experiments. Our data suggests acidic conditions are stressful for strain FLR19, as it responded by increasing expression of stress-response and antibiotic-resistance genes.
Project description:Deeper understanding of antibiotic-induced physiological responses is critical to identifying means for enhancing our current antibiotic arsenal. Bactericidal antibiotics with diverse targets have been hypothesized to kill bacteria, in part, by inducing production of damaging reactive species. This notion has been supported by many groups, but recently challenged. Here we robustly test the hypothesis using biochemical, enzymatic and biophysical assays along with genetic and phenotypic experiments. We first used a novel intracellular hydrogen peroxide (H2O2) sensor, together with a chemically diverse panel of fluorescent dyes sensitive to an array of reactive species, to demonstrate that antibiotics broadly induce redox stress. Subsequent gene expression analyses reveal that complex antibiotic-induced oxidative stress responses are distinct from canonical responses generated by supra-physiological levels of H2O2. We next developed a method to dynamically quantify cellular respiration and found that bactericidal antibiotics elevate oxygen consumption, indicating significant alterations to bacterial redox physiology. We further show that catalase or DNA mismatch repair enzyme overexpression, as well as antioxidant pre-treatment limit antibiotic lethality, indicating that reactive oxygen species causatively contribute to antibiotic killing. Critically, the killing efficacy of antibiotics was diminished under strict anaerobic conditions, but could be enhanced by exposure to molecular oxygen or addition of alternative electron acceptors, suggesting that environmental factors play a role in killing cells physiologically primed for death. This work provides direct evidence that bactericidal antibiotics, downstream of their target-specific interactions, induce complex redox alterations that contribute to cellular damage and death, thus supporting an evolving, expanded model of antibiotic lethality. Here, we used microarrays to analyze oxidative stress responses to bactericidal antibiotic treatment in wildtype and mutant E coli
Project description:Due to its high altitude and extreme climate conditions, the Tibetan plateau is a region vulnerable to the impact of climate changes and anthropogenic perturbation, thus understanding how its microbial communities function may be of high importance. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes and anthropogenic perturbation. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities in treatment site were distinct, compared with those in control site, e.g. shrubland vs grassland, grazing site vs ungrazing site, or warmer site vs colder site. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes.
2013-11-16 | GSE52425 | GEO
Project description:Effect of Microbial Metagenomics in Constructed Wetland Soil under Antibiotic Stress
Project description:The Virochip microarray (version 4.0) was used to detect viruses in patients from North America with unexplained influenza-like illness at the onset of the 2009 H1N1 pandemic. We used metagenomics-based technologies (the Virochip microarray) and deep sequencing to analyze nasal swab samples from individuals with 2009 H1N1 infection. This Series includes the Virochip microarray data only.
Project description:Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes. sixty-three samples were collected from four elevations (3200,3400,3600 and 3800 m) along a Tibetan alpine meadow; Three replicates in each treatment