Project description:We examined adaptive morphological divergence and epigenetic variation in genetically impoverished asexual populations of a freshwater snail, Potamopyrgus antipodarum from distinct environments. These populations exhibit environment-specific adaptive divergence in shell shape and significant genome wide DNA methylation differences among differentially adapted lake and fast water flow river populations. The epigenetic variation correlated with adaptive phenotypic variation in rapidly adapting asexual animal populations. This provides one of the first examples of environmentally-driven differences in epigenetics that associates with adaptive phenotypic divergence.
Project description:We examined adaptive morphological divergence and epigenetic variation in genetically impoverished asexual populations of a freshwater snail, Potamopyrgus antipodarum from distinct environments. These populations exhibit environment-specific adaptive divergence in shell shape and significant genome wide DNA methylation differences among differentially adapted lake and fast water flow river populations. The epigenetic variation correlated with adaptive phenotypic variation in rapidly adapting asexual animal populations. This provides one of the first examples of environmentally-driven differences in epigenetics that associates with adaptive phenotypic divergence.
2017-08-18 | GSE93836 | GEO
Project description:Genetic diversity and historical demography of firs from central Mexico
| PRJNA856692 | ENA
Project description:Historical demography of the Great Lakes Coregonus artedi species complex
Project description:The interplay between phenotypic plasticity and adaptive evolution has long been an important topic of evolutionary biology. This process is critical to our understanding of a species evolutionary potential in light of rapid climate changes. Despite recent theoretical work, empirical studies of natural populations, especially in marine invertebrates, are scarce. In this study, we investigated the relationship between adaptive divergence and plasticity by integrating genetic and phenotypic variation in Pacific oysters from its natural range in China. Genome resequencing of 371 oysters revealed unexpected fine-scale genetic structure that is largely consistent with phenotypic divergence in growth, physiology, thermal tolerance and gene expression across environmental gradient. These findings suggest that selection and local adaptation are pervasive and together with limited gene flow shape adaptive divergence. Plasticity in gene expression is positively correlated with evolved divergence, indicating that plasticity is adaptive and likely favored by selection in organisms facing dynamic environments such as oysters. Divergence in heat response and tolerance implies that the evolutionary potential to a warming climate differs among oyster populations. We suggest that trade-offs in energy allocation are important to adaptive divergence with acetylation playing a role in energy depression under thermal stress.
2018-07-27 | PXD008057 | Pride
Project description:Demography-driven and adaptive introgression of the Armeria syngameon
Project description:Mapping of expression quantitative trait loci (eQTL) is a powerful means for elucidating the genetic architecture of gene regulation. Yet, eQTL mapping has not been applied towards investigating the regulation architecture of genes involved in the process of population divergence, ultimately leading to speciation events. Here, we conducted an eQTL mapping experiment to compare the genetic architecture of transcript regulation in adaptive traits differentiating the recently evolved limnetic (dwarf) and benthic (normal) species pairs of lake whitefish. The eQTL were mapped in three data sets derived from a F1 hybrid-dwarf backcrossed family: the entire set of 66 genotyped individuals, and the two sexes treated separately. We identified strikingly more eQTL in the female dataset (174), compared to both male (54) and combined (33) data sets. The majority of these genes were not differentially expressed between male and female progeny of the backcross family, thus providing evidence for a strong pleiotropic sex-linked effect in transcriptomic regulation. The subtelomeric region of a linkage group segregating in females encompassed more than 50% of all eQTL, which exhibited the most pronounced additive effects. We also conducted a direct comparison of transcriptomic profiles between pure dwarf and normal progeny reared in controlled conditions. We detected 34 differentially expressed transcripts associated with eQTL segregating only in sex-specific data-sets, and mostly belonging to functional groups that differentiate dwarf and normal whitefish in natural populations. Therefore, these eQTL are not related to inter-individual variation, but instead to the adaptive and historical genetic divergence between dwarf and normal whitefish. This study exemplifies how the integration of genetic and transcriptomic data offers a strong means for dissecting the functional genomic response to selection by separating mapping family specific effects from genetic factors under selection, potentially involved in the phenotypic divergence of natural populations. Keywords: eQTL mapping