Project description:Elevated CO2 (eCO2) has an influence on developing leaf growth of rice (Oryza sativa cv. Nipponbare), specifically lower growth stage than P4 (plastochron number), resulting in decrease in leaf size compared with that in ambient CO2 (aCO2). Since several micro RNAs are associated with the regulation of plant leaf development, in order to clarify which micro RNAs are involved in the decrease of leaf blade size at eCO2, we carried out high-throughput small RNA sequencing analysis and compared the amount of identified miRNAs in developing rice leaf blade grown between aCO2 and eCO2 condition.
Project description:We report the application of methylacytosine immunoprecipetation combined with Illumina sequencing (MeDIP-seq) for high-throughput profiling of DNA methylation in rice embryo 3, 6, 9 DAP and endosperm 2, 3, 6, 9 DAP. A total number of 12-14 million of 2×49 bp paired-end reads was generated for each sample, and BOWTIE2 was used for read mapping. We generated genome-wide DNA methylation profiles of rice embryo and endosperm. This study provides a framework to systemically characterize the effect of DNA methylation in developing seeds and will help to illustrate the epigenetic regulation of rice seed development. Rice embryo and endosperm were selected for DNA extraction and methylacytosine immunoprecipetation combined with Illumina sequencing. We sought to obtain the genome-wide DNA methylation profilings of embryo at 3,6,9 days after pollination(DAP) and endosperm at 2,3,6,9 DAP. To that end, we hand-selected embryo at 3,6,9 DAP and endosperm at 2,3,6,9 DAP according to morphological criteria.
Project description:Endogenous small RNAs, including microRNAs (miRNAs) and short-interfering RNAs (siRNAs), function as posttranscriptional or transcriptional regulators in plants. miRNA function is essential for normal development and therefore likely to be important in the growth of the rice grain. To investigate the likely roles of miRNAs in rice grain development we carried out deep sequencing of the small RNA populations of rice grains. A total of 96,091 (including 23,867 reads from vegetative tissues) and 5,379,724 small RNA sequences that are longer than 17nt were generated. Approximately 94% of these small RNAs were 20-24nt in length. The majority of the small RNAs were singletons, indicating that rice genome has a very complex small RNA population, which is harder to be saturated. From these smal RNA sequences we found representatives of all 20 conserved plant miRNA families and evidence for changes in expression of miRNAs during rice grain development. Using an approach based on the presence of the miRNA and miRNA* sequences, we identified 51 novel, non-conserved rice miRNA families expressed in grains with functionally diverse predicted target genes. miRNA-guided cleavage was confirmed for a number of targets genes including ones with roles in sugar signalling and restoration of cytoplasmic male sterility. We identified a likely mirtron, indicating that plants can also use spliced introns as a source of miRNAs. Our sequencing results revealed four TAS3 loci; these all contain dual miR390 sites of which only the 3? site is cleaved. We also found a miRNA-like long hairpin generating phased 21nt small RNAs, strongly expressed in developing grains and show that these small RNAs act in trans to cleave target mRNAs. Keywords: high throughput pyrosequencing, small RNA, microRNA, grain development, rice
Project description:There are multiple types of small RNAs that may affect rice pollen’s development. To investigate the small RNA populations’ change during rice pollen development, 13-40 nt RNA were extracted from uninucleate microspores (UNM) and bicellular pollen (BCP) for high throughput sequencing. Together with our laboratory’s previous published rice tricellular pollen (TCP) small RNA sequencing data (GSM722128), sharp increase of tRNA fragments (tRFs) in BCP stage and a slightly decreased tRFs in TCP were found. Among which, new lengths of tRFs were also discovered. Our work accomplished the knowledge about tRFs in rice pollen development.
Project description:Identification of all expressed transcripts in a sequenced genome is essential both for genome analysis and for realization of the goals of systems biology. We used the transcriptional profiling technologies like M-bM-^@M-^Xmassively parallel signature sequencing (MPSS)M-bM-^@M-^Y and M-bM-^@M-^XSequencing by SynthesisM-bM-^@M-^Y (SBS) to develop a comprehensive expression atlas of rice (Oryza sativa cv Nipponbare). IlluminaM-bM-^@M-^Ys SBS technology can generate large amounts of sequence data in a short time at low cost compared to traditional Sanger sequencing based methods. Using the MPSS technology, we previously analyzed the transcriptomes of 72 rice tissues. To validate the sequencing results from MPSS technology, we employed SBS technology and constructed SBS libraries from 32 rice tissues (47 libraries including replications). For SBS library construction, we used the same mRNA samples and same restriction enzyme (DpnII) that were used for the construction of the MPSS libraries. These libraries include six abiotic-stress libraries, eight pathogen-infected libraries, five insect-damaged libraries, three developing seed libraries, and 10 untreated rice tissue libraries. This study was carried out with the following objectives; a) Identification and quantification of expressed genes in rice at all developmental stages of plant growth, response to biotic and abiotic stresses, and developing seeds; b) Compare SBS signatures with rice genomic sequence to identify novel transcripts; c) To validate the transcriptional data obtained through MPSS technology; and To create query and analysis tools to facilitate public use of and access to rice MPSS and SBS data and to display abundance and chromosomal locations of rice MPSS and SBS signatures. The SBS data will be available at http://mpss.udel.edu/rice_sbs/. 32 rice tissues (47 libraries including replications)
Project description:Identification of all expressed transcripts in a sequenced genome is essential both for genome analysis and for realization of the goals of systems biology. We used the transcriptional profiling technologies like ‘massively parallel signature sequencing (MPSS)’ and ‘Sequencing by Synthesis’ (SBS) to develop a comprehensive expression atlas of rice (Oryza sativa cv Nipponbare). Illumina’s SBS technology can generate large amounts of sequence data in a short time at low cost compared to traditional Sanger sequencing based methods. Using the MPSS technology, we previously analyzed the transcriptomes of 72 rice tissues. To validate the sequencing results from MPSS technology, we employed SBS technology and constructed SBS libraries from 32 rice tissues (47 libraries including replications). For SBS library construction, we used the same mRNA samples and same restriction enzyme (DpnII) that were used for the construction of the MPSS libraries. These libraries include six abiotic-stress libraries, eight pathogen-infected libraries, five insect-damaged libraries, three developing seed libraries, and 10 untreated rice tissue libraries. This study was carried out with the following objectives; a) Identification and quantification of expressed genes in rice at all developmental stages of plant growth, response to biotic and abiotic stresses, and developing seeds; b) Compare SBS signatures with rice genomic sequence to identify novel transcripts; c) To validate the transcriptional data obtained through MPSS technology; and To create query and analysis tools to facilitate public use of and access to rice MPSS and SBS data and to display abundance and chromosomal locations of rice MPSS and SBS signatures. The SBS data will be available at http://mpss.udel.edu/rice_sbs/.
Project description:Popular rice mega varieties lack sufficient key micronutrients (e.g., Fe, Zn), vitamins and a balanced amino acid composition that are essential for a healthy diet. The major bottleneck for improving the nutritional quality of popular rice varieties through conventional breeding or gene technology is our lack of an integrated understanding of the biochemical and molecular processes that occur during rice grain filling (and their determining genes or loci). In this project, we will perform molecular expression profiling on specific tissue layers of the rice grain. To perform this experiment, the material will be developing rice seeds from plants grown hydroponically under controlled greenhouse conditions. Then, the laser microdissection approach will be applied to dissect different parts of the grain (i.e, vascular trace, aleurone, nucellar epidermis, etc). Total RNA will be extracted from these dissected parts and RNA sequencing will be performed. In this project, we will learn how the synthesis and deposition of grain nutrients is regulated, particularly, during grain filling.
Project description:Endogenous small RNAs, including microRNAs (miRNAs) and short-interfering RNAs (siRNAs), function as posttranscriptional or transcriptional regulators in plants. miRNA function is essential for normal development and therefore likely to be important in the growth of the rice grain. To investigate the likely roles of miRNAs in rice grain development we carried out deep sequencing of the small RNA populations of rice grains. A total of 96,091 (including 23,867 reads from vegetative tissues) and 5,379,724 small RNA sequences that are longer than 17nt were generated. Approximately 94% of these small RNAs were 20-24nt in length. The majority of the small RNAs were singletons, indicating that rice genome has a very complex small RNA population, which is harder to be saturated. From these smal RNA sequences we found representatives of all 20 conserved plant miRNA families and evidence for changes in expression of miRNAs during rice grain development. Using an approach based on the presence of the miRNA and miRNA* sequences, we identified 51 novel, non-conserved rice miRNA families expressed in grains with functionally diverse predicted target genes. miRNA-guided cleavage was confirmed for a number of targets genes including ones with roles in sugar signalling and restoration of cytoplasmic male sterility. We identified a likely mirtron, indicating that plants can also use spliced introns as a source of miRNAs. Our sequencing results revealed four TAS3 loci; these all contain dual miR390 sites of which only the 3? site is cleaved. We also found a miRNA-like long hairpin generating phased 21nt small RNAs, strongly expressed in developing grains and show that these small RNAs act in trans to cleave target mRNAs. Keywords: high throughput pyrosequencing, small RNA, microRNA, grain development, rice Small RNA populations of shoots and roots of 7 days old seedlings, and 1-5 and 6-10 days after fertilization grains were determined using high throughput sequencing technology. The abundance of known miRNAs were compared based on the number of sequence reads. To give a whole picture of the rice small RNA populations and to reflect un-biasly the sequencing results, small RNAs that are longer than 17nt no matter whether or not they matched with the rice genome were included in this submitted dataset. The unmatched sequences may be derived from un-sequenced regions or sequencing errors.
Project description:Intervention type:DRUG. Intervention1:Huaier, Dose form:GRANULES, Route of administration:ORAL, intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary. Control intervention1:None.
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.. Timepoint:RNA sequencing of 240 blood samples of 80 cases and its analysis, scheduled from June 30, 2022..