Project description:Two synthetic bacterial consortia (SC) composed by bacterial strains isolated from a natural phenanthrene-degrading consortium (CON), Sphingobium sp. AM, Klebsiella aerogenes B, Pseudomonas sp. Bc-h and T, Burkholderia sp. Bk and Inquilinus limosus Inq were grown in LMM supplemented with 200 mg/L of phenanthrene (PHN) during 72 hours in triplicate.
Project description:Synthetic microbial consortia represent a new frontier for synthetic biology given that they can solve more complex problems than monocultures. However, most attempts to co-cultivate these artificial communities fail because of the ‘‘winner-takes-all’’ in nutrients competition. In soil, multiple species can coexist with a spatial organization. Inspired by nature, here we show that an engineered spatial segregation method can assemble stable consortia with both flexibility and precision. We create microbial swarmbot consortia (MSBC) by encapsulating subpopulations with polymeric microcapsules. The crosslinked structure of microcapsules fences microbes, but allows the transport of small molecules and proteins. MSBC method enables the assembly of various synthetic communities and the precise control over the subpopulations. These capabilities can readily modulate the division of labor and communication. Our work integrates the synthetic biology and material science to offer new insights into consortia assembly and server as foundation to diverse applications from biomanufacturing to engineered photosynthesis.
Project description:Microbial consortia consist of a multitude of prokaryotic and eukaryotic microorganisms. Their interaction is critical for the functioning of ecosystems. Until now, there is limited knowledge about the communication signals determining the interaction between bacteria and fungi and how they influence microbial consortia. Here, we discovered that bacterial low molecular weight arginine-derived polyketides trigger the production of distinct natural products in fungi. These compounds are produced by actinomycetes found on all continents except Antarctica and are characterized by an arginine-derived positively charged group linked to a linear or cyclic polyene moiety. Producer bacteria can be readily isolated from soil as well as fungi that decode the signal and respond with the biosynthesis of natural products. Both arginine-derived polyketides and the compounds produced by fungi in response shape microbial interactions.
2023-06-16 | PXD033242 | Pride
Project description:Synthetic bacterial consortia for optimized phenanthrene degradation
Project description:FHMs were exposed to three concentrations of phenanthrene (average measured 29, 287, 1006 ng/L) and fish were sampled after 48hr. There were 20 samples analyzed 5) control liver tissues 5) 29 ng/L phenanthrene exposed liver tissues 5) 287 ng/L phenanthrene exposed liver tissues 5)1006 ng/L phenanthrene exposed liver tissues. There was a total of 20 microarrays processed. In this study, gene expression to a 'dose-response' was investigated after in vivo exposure of fish to phenanthrene.
Project description:au10-04_phytoremediation; impact of sucrose on the tolerance of phenanthrene Effect of phenanthrene and sucrose - We test 3 conditions plants non-treated (C or t0), plants treated with phenanthrene (P) and plants tread with phenanthrene and sucrose (S). The plants were grown on MS/2 media for 17 days and then transferred on the corresponding condition. We took a sample of 30 plants at different times (0, 30 min, 2h, 4h, 8h and 24h).
Project description:Studying eight enzymes involved in the degradation of polycyclic aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray of 8,048 probes. During the biodegradation kinetics with phenanthrene, fluoranthene or a mix of both pollutants, we identified the targeted set of genes induced by these pollutants, compared to basal expression detected with glucose. Hybridizing total DNA extracted from S3, we show the efficiency of our probe design to study a complex environment. Despite the relative small size of our probes (23-mers), their sensitivity is reliable as we can detect the presence of genes in this complex mixture. Obtained results are further described in Sébastien Terrat, Eric Peyretaillade, Olivier Gonçalves, Eric Dugat-Bony, Fabrice Gravelat, and Pierre Peyret. 2010 - Studying the ‘Unkown’ with Metabolic Design, a new probe design software for explorative functional microarrays development. Nucleic Acids Research (submited). A 17 chip study was realized using total RNA recovered from separate cultures of Sphingomonas paucimobilis sp. EPA505 with phenanthrene, fluoranthene or a mix of these both pollutants as sole carbon and energy source. A negative kinetic expermient was realized with glucose as sole carbon and energy source. Each chip measures the expression level of 8 genes from Sphingomonas paucimobilis sp. EPA505 with 23-mer probes (a total of 8,048 probes) using a new design approach. We also assess metabolic capacities of microbial communities in an aromatic hydrocarbons contaminated soil named S3. Each probe was spotted in triplicate, and a total of 8,863 random probes was used to determine the background noise.
Project description:Polycyclic aromatic hydrocarbons are common pollutants in soil, have negative effects on soil ecosystems, and are potentially carcinogenic. The Springtail (Collembola) Folsomia candida is often used as an indicator species for soil toxicity. Here we report a toxicogenomic study that translates the ecological effects of the polycyclic aromatic hydrocarbon phenanthrene in soil to the early transcriptomic responses in Folsomia candida. Microarrays were used to examine two different exposure concentrations of phenanthrene, namely the EC10 (24.95 mg kg-1 soil) and EC50 (45.80 mg kg-1 soil) on reproduction of this springtail, which evoked 405 and 251 differentially expressed transcripts, respectively. Fifty transcripts were differential in response to either concentration. Many transcripts encoding xenobiotic detoxification and biotransformation enzymes (phases I, II, and III) were upregulated in response to either concentration. Furthermore, indications of general and oxidative stress were found in response to phenanthrene. Chitin metabolism appeared to be disrupted particularly at the low concentration, and protein translation appeared suppressed at the high concentration of phenanthrene; most likely in order to reallocate energy budgets for the detoxification process. Finally, an immune response was evoked especially in response to the high effect concentration, which was also described in a previous transcriptomic study using the same effect concentration (EC50) of cadmium. Our study provides new insights in the molecular mode of action of the important polluting class of polycyclic aromatic hydrocarbons in soil animals. Furthermore, we present a fast, sensitive, and specific soil toxicity test which enhances traditional tests and may help to improve current environmental risk assessments and monitoring of potentially polluted sites. Folsomia candida was exposed to phenanthrene spiked soil or untreated (reference/control) soil for 2 days. Two different concentrations of phenanthrene were used, 24.95 and 45.80 mg/kg soil which represent the EC10 and EC50 on reproduction, respectively. For each concentration treatment 4 biological replicates were used, replicate samples consisted of total RNA extracted from ~30 animals exposed in the same jar to either reference or phenanthrene spiked soil. Phenanthrene treated samples were always hybridized to reference samples in an evenly distributed dye-swap manner, which resulted in total in 8 hybridizations of 16 samples.
Project description:The project aims at describing the transcriptome composition and differential expression of genes in response to different stressors (elevated temperature, heavy metals (cadmium) and organic pollutants (phenanthrene)).
Project description:The project aims at describing the transcriptome composition and differential expression of genes in response to different stressors (elevated temperature, heavy metals (cadmium) and organic pollutants (phenanthrene)).