Project description:Nuclear factor-kappa B (NF-κB) plays a critical role in the host defense against microbial pathogens. Many pathogens modulate NF-κB signaling to establish infection in their host. Salmonella enterica serovar Typhimurium (S. Typhimurium) possesses two type III secretion systems (T3SS-1 and T3SS-2) and directly injects many effector proteins into host cells. It has been reported that some effectors block NF-κB signaling, but the molecular mechanism of the inactivation of NF-κB signaling in S. Typhimurium is poorly understood. Here, we identified seven type III effectors-GogA, GtgA, PipA, SseK1, SseK2, SseK3, and SteE-that inhibited NF-κB activation in HeLa cells stimulated with TNF-α. We also determined that only GogA and GtgA are involved in regulation of the activation of NF-κB in HeLa cells infected with S. Typhimurium. GogA, GtgA, and PipA are highly homologous to one another and have the consensus zinc metalloprotease HEXXH motif. Our experiments demonstrated that GogA, GtgA, and PipA each directly cleaved NF-κB p65, whereas GogA and GtgA, but not PipA, inhibited the NF-κB activation in HeLa cells infected with S. Typhimurium. Further, expressions of the gogA or gtgA gene were induced under the SPI-1-and SPI-2-inducing conditions, but expression of the pipA gene was induced only under the SPI-2-inducing condition. We also showed that PipA was secreted into RAW264.7 cells through T3SS-2. Finally, we indicated that PipA elicits bacterial dissemination in the systemic stage of infection of S. Typhimurium via a T3SS-1-independent mechanism. Collectively, our results suggest that PipA, GogA and GtgA contribute to S. Typhimurium pathogenesis in different ways.
Project description:BackgroundAdolescent depression can place a young person at high risk of recurrence and a range of psychosocial and vocational impairments in adult life, highlighting the importance of early recognition and prevention. Parents/carers are well placed to notice changes in their child's emotional wellbeing which may indicate risk, and there is increasing evidence that modifiable factors exist within the family system that may help reduce the risk of depression and anxiety in an adolescent. A randomised controlled trial (RCT) of the online personalised 'Partners in Parenting' programme developed in Australia, focused on improving parenting skills, knowledge and awareness, showed that it helped reduce depressive symptoms in adolescents who had elevated symptom levels at baseline. We have adapted this programme and will conduct an RCT in a UK setting.MethodsIn total, 433 family dyads (parents/carers and children aged 11-15) will be recruited through schools, social media and parenting/family groups in the UK. Following completion of screening measures of their adolescent's depressive symptoms, parents/carers of those with elevated scores will be randomised to receive either the online personalised parenting programme or a series of online factsheets about adolescent development and wellbeing. The primary objective will be to test whether the personalised parenting intervention reduces depressive symptoms in adolescents deemed at high risk, using the parent-reported Short Mood & Feelings Questionnaire. Follow-up assessments will be undertaken at 6 and 15 months and a process evaluation will examine context, implementation and impact of the intervention. An economic evaluation will also be incorporated with cost-effectiveness of the parenting intervention expressed in terms of incremental cost per quality-adjusted life year gained.DiscussionHalf of mental health problems emerge before mid-adolescence and approximately three-quarters by mid-20s, highlighting the need for effective preventative strategies. However, few early interventions are family focused and delivered online. We aim to conduct a National Institute for Health and Care Research (NIHR) funded RCT of the online personalised 'Partners in Parenting' programme, proven effective in Australia, targeting adolescents at risk of depression to evaluate its effectiveness, cost-effectiveness and usability in a UK setting. TRIAL REGISTRATION {2A}: ISRCTN63358736 . Registered 18 September 2019.
Project description:Conventional synthesis of colloidal molecules (CMs) mainly depends on particle-based self-assembly of patchy building blocks. However, direct access to CMs by the self-assembly of isotropic colloidal subunits remains challenging. Here, we report the mass production of AB n -type CMs by polymerization-induced particle-assembly (PIPA), using a linear ABC triblock terpolymer system. Starting from diblock copolymer spheres, the association of spheres takes place in situ during the polymerization of the third block. The third blocks aggregate into attractive domains, which connect spheres into CMs. The stability of CMs is ensured, as long as the conversions are limited to ca. 50%, and the pH is low. The valence of AB n -type CMs (n = 2-6) is determined by the volume ratio of the polymer blocks. By tuning the volume ratio, 78.5% linear AB2-type CMs are yielded. We demonstrate that polymerization-induced particle-assembly is successful for the scalable fabrication of AB n -type CMs (50 g L-1), and can be easily extended to vastly different triblock terpolymers, for a wide range of applications.
Project description:Pipidae is a clade of Anura that diverged relatively early from other frogs in the phylogeny of the group. Pipids have a unique combination of morphological features, some of which appear to represent a mix of adaptations to aquatic life and plesiomorphic characters of Anura. The present study describes the karyotype of Pipa carvalhoi Miranda-Ribeiro, 1937, including morphology, heterochromatin distribution, and location of the NOR site. The diploid number of P. carvalhoi is 2n=20, including three metacentric pairs (1, 4, 8), two submetacentric (2 and 7), three subtelocentric (3, 5, 6), and two telocentric pairs (9 and 10). C-banding detected centromeric blocks of heterochromatin in all chromosome pairs and the NOR detected in chromosome pair 9, as confirmed by FISH using the rDNA 28S probe. The telomeric probes indicated the presence of interstitial telomeric sequences (ITSs), primarily in the centromeric region of the chromosomes, frequently associated with heterochromatin, suggesting that these repeats are a significant component of this region. The findings of the present study provide important insights for the understanding of the mechanisms of chromosomal evolution in the genus Pipa, and the diversification of the Pipidae as a whole.
Project description:In Pseudomonas aeruginosa PAO1, 41 genes encode proteins predicted to be involved in the production or degradation of c-di-GMP, a ubiquitous secondary messenger that regulates a variety of physiological behaviors closely related to biofilm and aggregate formation. Despite extensive effort, the entire picture of this important signaling network is still unclear, with one-third of these proteins remaining uncharacterized. Here, we show that the deletion of pipA, which produces a protein containing two PAS domains upstream of a GGDEF-EAL tandem, significantly increased the intracellular c-di-GMP level and promoted the formation of aggregates both on surfaces and in planktonic cultures. However, this regulatory effect was not contributed by either of the two classic pathways modulating biofilm formation, exopolysaccharide (EPS) overproduction or motility inhibition. Transcriptome sequencing (RNA-Seq) data revealed that the expression levels of 361 genes were significantly altered in a ΔpipA mutant strain compared to the wild type (WT), indicating the critical role of PipA in PAO1. The most remarkably downregulated genes were located on the Pf4 bacteriophage gene cluster, which corresponded to a 2-log reduction in the Pf4 phage production in the ΔpipA mutant. The sizes of aggregates in ΔpipA cultures were affected by exogenously added Pf4 phage in a concentration-dependent manner, suggesting the quantity of phage plays a part in regulating the formation of aggregates. Further analysis demonstrated that PipA is highly conserved across 83 P. aeruginosa strains. Our work therefore for the first time showed that a c-di-GMP phosphodiesterase can regulate bacteriophage production and provided new insights into the relationship between bacteriophage and bacterial aggregation. IMPORTANCE The c-di-GMP signaling pathways in P. aeruginosa are highly organized and well coordinated, with different diguanylate cyclases and phosphodiesterases playing distinct roles in a complex network. Understanding the function of each enzyme and the underlying regulatory mechanisms not only is crucial for revealing how bacteria decide the transition between motile and sessile lifestyles, but also greatly facilitates the development of new antibiofilm strategies. This work identified bacteriophage production as a novel phenotypic output controlled transcriptionally by a phosphodiesterase, PipA. Further analysis suggested that the quantity of phage may be important in regulating autoaggregation, as either a lack of phage or overproduction was associated with higher levels of aggregation. Our study therefore extended the scope of c-di-GMP-controlled phenotypes and discovered a potential signaling circuit that can be target for biofilm treatment.