Project description:This study investigated the cellular and molecular effects of Dead Sea climatotherapy in psoriasis patients who achieved complete remission.
Project description:Recent studies have unveiled the deep sea as a rich biosphere, populated by species descended from shallow-water ancestors post-mass extinctions. Research on genomic evolution and microbial symbiosis has shed light on how these species thrive in extreme deep-sea conditions. However, early adaptation stages, particularly the roles of conserved genes and symbiotic microbes, remain inadequately understood. This study examined transcriptomic and microbiome changes in shallow-water mussels Mytilus galloprovincialis exposed to deep-sea conditions at the Site-F cold seep in the South China Sea. Results reveal complex gene expression adjustments in stress response, immune defense, homeostasis, and energy metabolism pathways during adaptation. After 10 days of deep-sea exposure, shallow-water mussels and their microbial communities closely resembled those of native deep-sea mussels, demonstrating host and microbiome convergence in response to adaptive shifts. Notably, methanotrophic bacteria, key symbionts in native deep-sea mussels, emerged as a dominant group in the exposed mussels. Host genes involved in immune recognition and endocytosis correlated significantly with the abundance of these bacteria. Overall, our analyses provide insights into adaptive transcriptional regulation and microbiome dynamics of mussels in deep-sea environments, highlighting the roles of conserved genes and microbial community shifts in adapting to extreme environments.
Project description:Microbially influenced corrosion (MIC) poses a major threat to metal structures across various industries, resulting in substantial economic losses and environmental risks. As deep-sea exploration expands, understanding MIC under high hydrostatic pressure becomes increasingly critical. Microorganisms in these extreme environments undergo distinct structural and metabolic adaptations to survive and thrive. In this study, we employed a proteomic approach to examine the lifestyle and corrosive potential of two sulfate-reducing bacteria (SRB) species with different pressure optima under simulated depths ranging from the sea surface to 3000 meters. Species-specific corrosion mechanisms and unique proteomic signatures associated with pressure adaptation were identified, correlating with opposing trends in corrosion rates. Our findings emphasize the need to characterize microbial physiology in relation to environmental conditions to better predict corrosion risks in extreme deep-sea settings.