Project description:Comparison of gene expression profiles induced by the mycotoxin, aflatoxin B1 (AFB1), in primary human hepatocytes and HepaRG cells. Initial mechanisms involved in the complex multistep process leading to malignant transformation by chemicals remain largely unknown. We have analysed changes in gene expression profiles in primary human hepatocytes and differentiated human hepatoma HepaRG cells after a 24 h treatment with 0.05 or 0.25µM aflatoxin B1 (AFB1), a potent genotoxic hepatocarcinogen.
Project description:Identification of protein changes and pathways involved in combined effects of aflatoxin B1 and ochratoxin A and the preventive effect of dietary by-product antioxidants administration against these mycotoxins damage.
Project description:Identification of protein changes and pathways involved in combined effects of aflatoxin B1 and ochratoxin A and the preventive effect of dietary by-product antioxidants administration against these mycotoxins damage.
Project description:Comparison of gene expression profiles induced by the mycotoxin, aflatoxin B1 (AFB1), in primary human hepatocytes and HepaRG cells. Initial mechanisms involved in the complex multistep process leading to malignant transformation by chemicals remain largely unknown. We have analysed changes in gene expression profiles in primary human hepatocytes and differentiated human hepatoma HepaRG cells after a 24 h treatment with 0.05 or 0.25µM aflatoxin B1 (AFB1), a potent genotoxic hepatocarcinogen. Three independent biological replicates of HepaRG cell cultures and two pools of three primary human hepatocyte cultures each, were investigated. Cells were treated with 0.05 or 0.25µM AFB1 for 24 h.
Project description:Aflatoxins are toxic and carcinogenic secondary metabolites produced by the fungi Aspergillus flavus and A. parasiticus. In order to better understand the molecular mechanisms that regulate aflatoxin production, the biosynthesis of the toxin in A. flavus and A. parasticus grown in yeast extract sucrose media supplemented with 50 mM tryptophan (Trp) were examined. A. flavus grown in the presence of 50 mM tryptophan was found to have significantly reduced aflatoxin B1 and B2 biosynthesis, while A. parasiticus cultures had significantly increased B1 and G1 biosynthesis. Microarray analysis of RNA extracted from fungi grown under these conditions revealed seventy seven genes that are expressed significantly different between A. flavus and A. parasiticus, including the aflatoxin biosynthetic genes aflD (nor-1), aflE (norA), and aflO (omtB). It is clear that the regulatory mechanisms of aflatoxin biosynthesis in response to Trp in A. flavus and A. parasiticus are different. These candidate genes may serve as regulatory factors of aflatoxin biosynthesis. Keywords: Aflatoxin, Aspergillus, flavus, Amnio Acids, Tryptophan
Project description:The study investigated differential gene expression, microRNA expression and DNA methylation changes in a pool of primary human hepatocyte RNA and DNA following 5 days of repetitive exposure to a low or moderate dose of aflatoxin B1 or DMSO. Three biological replicates per compound/solvent.
Project description:The study investigated differential miRNA changes in primary mouse hepatocyte following 24 and 48 hours of exposure to aflatoxin B1, cisplatin, benzo(a)pyrene, 2,3,7,8-tetrachloordibenzo-p-dioxine, cyclosporin A or Wy-14,643 or their responsive solvent. Three (four for Wy-14,643) biological replicates per compound/solvent.