Project description:Mycobacterium abscessus is an emerging pathogen causing severe pulmonary infections, particularly in individuals with underlying conditions, such as cystic fibrosis or chronic obstructive pulmonary disease. Macrolides, including clarithromycin (CLR) and azithromycin (AZM), represent the current cornerstone of antibiotherapy against M. abscessus complex. However, prolonged exposure to macrolides can induce the apparition of Erm(41)-mediated resistance, limiting their spectrum of activity and often leading to therapeutic failure. Therefore, inhibiting Erm(41) could thwart this resistance mechanism to maintain macrolide susceptibility and avoid the therapeutic failure. In a previous study, the Erm(41) methyltransferase was identified as a target enzyme of Cyclipostins and Cyclophostin compounds (CyC). Herein, we took advantage of this feature to evaluate the in vitro activity of clarithromycin and azithromycin in combination with different CyC via the checkerboard assay on macrolide susceptible and induced macrolide-resistant M. abscessus generated by either clarithromycin or azithromycin exposure. Our results emphasize the use of the CyC to prevent/overcome Erm(41) induced resistance, restore macrolide susceptibility. This work should help to expand our therapeutic arsenal in the fight against a particularly antibiotic resistant mycobacterial species and could provide the opportunity to revisit the therapeutic regimen for combating M. abscessus pulmonary infections in CF patients, and particularly in erm(41)-positive strains.
Project description:Mycobacterium abscessus [M. abscessus (sensu lato) or M. abscessus group] comprises three closely related taxa with taxonomic status under revision: M. abscessus sensu stricto, M. bolletii and M. massiliense. We describe here a simple, robust and cost effective PCR-based method for distinguishing among M. abscessus, M. massiliense and bolletii. Based on the M. abscessus ATCC 19977T genome, discriminatory regions were identified between M. abscessus and M. massiliense from array-based comparative genomic hybridization. A typing scheme using PCR primers designed for four of these locations was applied to 46 well-characterized clinical isolates comprising 29 M. abscessus, 15 M. massiliense and 2 M. bolletii previously identified by multi-target sequencing. Interestingly, 2 isolates unequivocally identified as M. massiliense were shown to have a full length erm(41) instead of the expected gene deletion and showed inducible clarithromycin resistance after 14 days. We propose using this PCR-based typing scheme combined with erm(41) PCR for a straightforward identification of M. abscessus, M. massiliense and M. bolletii and assessment of inducible clarithromycin resistance. This method can be easily implemented into a routine workflow providing subspecies level identification within 24 hours of isolation of M. abscessus group. Two-color CGH with 4 independent Mycobacterium clinical isolates and the M massiliense type strain (CCUG 48898) labeled with Cy3 were cohybridized with the M abscessus type strain (ATCC 19977) labeled with Cy5 on a tiling array designed against the M abscessus type strain
Project description:Mycobacterium abscessus [M. abscessus (sensu lato) or M. abscessus group] comprises three closely related taxa with taxonomic status under revision: M. abscessus sensu stricto, M. bolletii and M. massiliense. We describe here a simple, robust and cost effective PCR-based method for distinguishing among M. abscessus, M. massiliense and bolletii. Based on the M. abscessus ATCC 19977T genome, discriminatory regions were identified between M. abscessus and M. massiliense from array-based comparative genomic hybridization. A typing scheme using PCR primers designed for four of these locations was applied to 46 well-characterized clinical isolates comprising 29 M. abscessus, 15 M. massiliense and 2 M. bolletii previously identified by multi-target sequencing. Interestingly, 2 isolates unequivocally identified as M. massiliense were shown to have a full length erm(41) instead of the expected gene deletion and showed inducible clarithromycin resistance after 14 days. We propose using this PCR-based typing scheme combined with erm(41) PCR for a straightforward identification of M. abscessus, M. massiliense and M. bolletii and assessment of inducible clarithromycin resistance. This method can be easily implemented into a routine workflow providing subspecies level identification within 24 hours of isolation of M. abscessus group.
Project description:Mycobacterium abscessus is an opportunistic pathogen notorious for its resistance to most classes of antibiotics and low cure rates. In addition to the highly impermeable mycomembrane, M. abscessus carries an array of shared and species-specific defence mechanisms. However, it remains unknown whether M. abscessus’ antibiotic stress response is fine-tuned or an all-or-nothing response. A deeper understanding of underlying resistance and tolerance mechanisms is pivotal in development of targeted therapeutic regimens. We elucidate the transcriptomic response of M. abscessus to antibiotics recommended in treatment guidelines. The M. abscessus ATCC 19977 strain was used. Bacteria were subjected to sub-inhibitory concentrations of drugs for 4- and 24-hours, followed by RNA sequencing. In addition, time-kill kinetic analysis was performed using bacteria after pre-exposure to clarithromycin, amikacin or tigecycline for 24-hours. Lastly, Pan-genome analysis of 35 strains from all three subspecies was performed. Mycobacterium abscessus shows both drug-specific and communal transcriptomic responses to antibiotic exposure. Key features of its tolerance to antibiotics are drug-specific converting enzymes, target protection and shifts in its respiratory chain and metabolic state. The observed transcriptomic responses are likely not strain-specific, as genes involved in tolerance are found in all included strains, with the exception of erm(41) in M. abscessus subspecies massiliense. Due to the communal response elicited by ribosomal-targeting antibiotics, exposure to any of these drugs rapidly induces tolerance mechanisms that decrease susceptibility to ribosome-targeting drugs from multiple classes. Screening high-risk patients (e.g. those with bronchiectasis) for M. abscessus infection prior to starting macrolide or aminoglycoside maintenance therapy is warranted.
Project description:Since 2010 a macrolide resistant emm92-type strain of invasive group A Streptococcus has emerged in the United States, posing the question of whether acquired erm(T)-encoded resistance may have contributed to the rise in infections. Here, we present RNA sequencing of the emm92 transcriptome in response to erythromycin exposure.
Project description:Human macrophages are a natural host of many mycobacterium species, including Mycobacterium abscessus (M. abscessus), an emerging pathogen affecting patients with lung diseases and immunocompromised individuals. There are few available treatments and the search for effective antibiotics against M. abscessus has been hindered by the lack of a tractable in vitro intracellular model of infection. Here, we established a reliable model for M. abscessus infection using human pluripotent stem cell-derived macrophages (hPSC-macrophages). hPSC differentiation permitted a reproducible generation of functional human macrophages that were highly susceptible to M. abscessus infection. Electron microscopy demonstrated that M. abscessus was present in the vacuoles of hPSC-macrophages. RNA-sequencing analysis revealed a time dependent host cell response to M. abscessus, with differing gene and protein expression patterns observed at 3-hours, 24-hours and 48-hours post-infection. Culture of engineered tdTOMATO-expressing hPSC-macrophages with GFP-expressing M. abscessus enabled rapid and image-based high-throughput analysis of intracellular infection and quantitative assessment of antibiotic resistance and efficacy. Our study describes the first hPSC-based model for M. abscessus infection, which represents a novel platform for studying M. abscessus-host interaction and an accessible tool for drug discovery.
Project description:Clostridioides difficile infection (CDI), characterized by colitis and diarrhea, afflicts approximately half a million people in the United States every year, burdening both individuals and the healthcare system. C. difficile 630Δerm is an erythromycin-sensitive variant of the clinical isolate C. difficile 630 and is commonly used in the C. difficile research community due to its genetic tractability. 630Δerm possesses a point mutation in perR, an autoregulated transcriptional repressor that regulates oxidative stress resistance genes. This point mutation results in a constitutively de-repressed PerR operon in 630Δerm. To address the impacts of perR on phenotypes relevant for oxygen tolerance and relevant to a murine model of CDI, we corrected the point mutant to restore PerR function in 630∆erm (herein, 630∆erm perRWT). We demonstrate that there is no difference in growth between 630Δerm and a 630Δerm perRWT under anaerobic conditions or when exposed to concentrations of O2 that mimic those found near the surface of the colonic epithelium. However, 630∆erm perRWT is more sensitive to ambient oxygen than 630∆erm, which coincides with alterations in expression of a variety of perR-dependent and perR-independent genes. Finally, we show that 630∆erm and 630∆erm perRWT do not differ in their ability to infect and cause disease in a well-established murine model of CDI. Together, these data support the hypothesis that the perR mutation in 630∆erm arose as a result of exposure to ambient oxygen and that the perR mutation in 630∆erm is unlikely to impact CDI-relevant phenotypes in laboratory studies
Project description:In this study, we were interested to get deeper insights into the molecular mechanisms that govern the formation and selection of the different colony morphologies in Mycobacterium abscessus strains, including the potential reversibility of the rough (R) phenotype into a smooth (S) phenotype. We used next generation sequencing (NGS) and micro-array / RNAseq approaches to determine the genome sequences and transcriptomic profiles of three isogenic S/R strain couples of M. abscessus. One clinical isolate strain named CF and two collection strains referred as 19977-AT and 19977-IP. To perform the transcriptomic comparison of the rough variant versus the smooth variant for each M. abscessus strain, a customized micro-array has been manufactured by Agilent (8 x 15k format). The design of oligonucleotides covering all protein coding sequences was done using OligoArray version 2.1 on the basis of the 4920 predicted coding sequences composing the entire M. abscessus genome. The experimental data for each of the 3 strains consisted of 6 hybridizations (3 biological replicates with dye-swap).