Project description:Using RNAseq of small RNA libraries isolated from the gill tissue of the Antarctic fish Trematomus bernacchii we have characterized the termal sensitivity of miRNA homologues in these highly stenothermic fish.
Project description:Two fecal samples from humpback whales (Megaptera novaeangliae) off the West Antarctic Peninsula were analyzed on a Q Exactive Orbitrap MS to characterize the metal-binding ligand pool that is released into seawater.
Project description:Because of severe abiotic limitations, Antarctic soils represent simplified ecosystems, where microorganisms are the principle drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report a number of highly consistent changes in microbial community structure and abundance across very disparate sub-Antarctic and Antarctic environments following three years of experimental field warming (+ 0.5-2°C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio. These alterations were linked to a significant increase in soil respiration. Furthermore, the shifts toward generalist or opportunistic bacterial communities following warming weakened the linkage between bacterial diversity and functional diversity. Warming also increased the abundance of some organisms related to the N-cycle, detected as an increase in the relative abundance of nitrogenase genes via GeoChip microarray analyses. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures, thereby potentially disrupting soil functioning.
Project description:As an essential micronutrient that is scarce in surface ocean waters, zinc (Zn) has the potential to limit oceanic photosynthetic productivity and influence the global carbon cycle. Here we observed Zn co-limitation with iron (Fe) in the natural phytoplankton community of Terra Nova Bay, Antarctica, induced by the drawdown of seawater CO2 and dZn during a bloom. Incubations amended with Zn resulted in significantly higher chlorophyll a content and greater macronutrient and dissolved inorganic carbon drawdown compared to Fe addition alone. Multiple Zn and Fe response proteins were observed in experimental and water column samples demonstrating co-stress in various algal taxa. Together these results demonstrate that Zn limitation can occur in productive Antarctic coastal ecosystems. Thus, Zn may be an important factor limiting the total productivity potential of marine phytoplankton.
Project description:Two fecal samples from humpback whales (Megaptera novaeangliae) off the West Antarctic Peninsula were analyzed on 21 Tesla FT-ICR MS to characterize the metal-binding ligand pool that is released into seawater. Also part of this project is MassIVE deposit MSV000094994. This work was conducted at the The National High Magnetic Field Laboratory, which is supported by the National Science Foundation Division of Materials Research and Division of Chemistry through DMR-1644779 and the State of Florida
Project description:The effects of ocean acidification (OA) on nitrous oxide (N2O) production and on the community composition of ammonium oxidising archaea (AOA) were examined in the northern and southern sub-polar and polar Atlantic Ocean. Two research cruises were performed during June 2012 between the North Sea and Arctic Greenland and Barent Seas, and in January-February 2013 to the Antarctic Scotia Sea. Seven stations were occupied in all during which shipboard experimental manipulations of the carbonate chemistry were performed through additions of NaHCO3- + HCl in order to examine the impact of short- term (48 hour for N2O and between 96 and 168 hour for AOA) exposure to control and elevated conditions of OA. During each experiment, triplicate incubations were performed at ambient conditions and at 3 lowered levels of pH which varied between 0.06 and 0.4 units according to the total scale and which were targeted at CO2 partial pressures of ~500, 750 and 1000 μatm. The AOA assemblage in both Arctic and Antarctic regions was dominated by two major archetypes that represent the marine AOA clades most often detected in seawater. There were no significant changes in AOA assemblage composition between the beginning and end of the incubation experiments. N2O production was sensitive to decreasing pHT at all stations and decreased by between 2.4 and 44% with reduced pHT values of between 0.06 and 0.4. The reduction in N2O yield from nitrification was directly related to a decrease of between 28 and 67% in available NH3 as a result of the pH driven shift in the NH3:NH4+ equilibrium. The maximum reduction in N2O production at conditions projected for the end of the 21st century was estimated to be 0.82 Tg N y-1.