Project description:We identified the BCL6 protooncogene as a critical downstream effector of FoxO3A in self-renewal signaling of CML-initiating cells. BCL6 represses Arf and p53 in CML cells and is required for leukemia stem cell maintenance, colony formation and initiation of leukemia in transplant recipients. Importantly, peptide inhibition of BCL6 in human CML cells compromises colony formation and leukemia-initiation in xenotransplanted mouse recipients. These findings identify peptide-inhibition of BCL6 as a novel strategy to eradicate leukemia-initiating cells in CML. Identification of BCL6 binding sites in human CML cell line JURL-MK1
Project description:We identified the BCL6 protooncogene as a critical downstream effector of FoxO3A in self-renewal signaling of CML-initiating cells. BCL6 represses Arf and p53 in CML cells and is required for leukemia stem cell maintenance, colony formation and initiation of leukemia in transplant recipients. Importantly, peptide inhibition of BCL6 in human CML cells compromises colony formation and leukemia-initiation in xenotransplanted mouse recipients. These findings identify peptide-inhibition of BCL6 as a novel strategy to eradicate leukemia-initiating cells in CML.
Project description:To understand the underlying mechanism by which Alox15 gene is required by HSCs, we performed a comparative DNA microarray analysis using total RNA isolated from wild type Lin-Sca-1+c-Kit+, SELP-/- Lin-Sca-1+c-Kit+. The result was validated by quantitative real-time PCR analysis of wild type Lin-Sca-1+c-Kit+ and SELP-/- Lin-Sca-1+c-Kit+. Cancer stem cells are responsible for the initiation and maintenance of some types of cancer, and few effective target genes in these stem cells have been identified. Here we show that the selp is essential for the survival of leukemia stem cells (LSCs) in BCR-ABL-induced chronic myeloid leukemia (CML). To understand the underlying mechanism through which SELP regulates the function of HSCs, the gene expression profiles between WT and Selp-/- HSCs were compared. To understand the underlying mechanism through which SELP regulates the function of HSCs, the gene expression profiles between WT and Selp-/- HSCs were compared.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.