Project description:Brown adipose tissue (BAT) is a thermogenic organ that dissipates stored energy as heat to maintain body temperature in infants and small mammals. This process may also provide protection from development of diet-induced obesity. We found that the bioactive lipid mediator lysophosphatidic acid (LPA) markedly decreases differentiation of cultured primary brown adipocyte precursors, while potent selective inhibitors of the LPA-generating enzyme autotaxin (ATX) promote differentiation. Transgenic mice overexpressing ATX exhibited reduced expression of BAT-related genes in peripheral white adipose tissue and accumulated significantly more fat than wild-type controls when fed a high fat diet. Our results indicate that ATX and its product LPA are physiologically relevant negative regulators of brown fat adipogenesis and suggest that a decrease in peripheral brown adipose tissue results in increased susceptibility to diet-induced obesity in mice.
Project description:Chronic inflammation is one of the major players in the obesity related metabolic syndrome. However the various inflammatory mediators appear to promote insulin resistance directly or indirectly through their ability to induce the inflammatory cascade. Interleukin-15 (IL-15) is a pro-inflammatory cytokine that is involved in the pathogenesis of different autoimmune diseases such as rheumatoid arthritis, inflammatory bowel disease and type 1 diabetes. We postulated that as a pro-inflammatory cytokine, IL-15 promotes obesity during fat excess by promoting insulin resistance from tissues involved in energy metabolism. We used microarrays to characterize the gene expression profile of the brown adipose tissue of IL-15 mice under normal diet or diet enriched with the beta3-adrenergic agonist CL 316243 Total RNA obtained from adipose tissue of wt- or IL15-KO mice under normal diet or diet enriched with the beta3-adrenergic agonist CL 316243
Project description:Here, we analysed the global proteome of visceral, subcutaneous and brown adipose as well as liver tissues in a C57BL/6J mouse model of diet-induced obesity, following dietary exposure to 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH). This study includes data on male and female mice, as well as on immediate DINCH exposure and retained effects after a recovery phase.
Project description:Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue. Experiment Overall Design: Comparisons of white and brown pre- and mature-adiposytes
Project description:Autotaxin (ATX, Enpp2) is a secreted lysophospholipase D catalyzing the production of lysophosphatidic acid (LPA), a pleiotropic growth factor-like phospholipid. Upregulated ATX expression has been detected in various chronic inflammatory disorders and different types of cancer; among them increased ATX mRNA or immunohistochemical staining has been suggested in Hepatocellular carcinoma (HCC) patients. Conditional deletion of ATX/Enpp2 specifically from hepatocytes, in AlbEnpp2-/- mice, attenuated the DEN/CCl4-mediated HCC development in mice. To obtain mechanistic insights into the mode of action of the ATX/LPA axis in HCC development, we performed whole liver, genome wide expression profiling of DEN/CCl4-induced HCC upon the genetic deletion of Autotaxin (ATX) in AlbEnpp2-/- mice in comparison with DEN/CCl4-treated and untreated wt littermate mice.
Project description:The arrays were used to explore how parents’ obesity status influence their offspring’s weight. We randomly assigned three-week-old mice to two groups, one group receiving a high-fat diet (HFD), the other group receiving a control diet (chow). Adult females of both groups were mated to males fed with HFD or CD. F1 transcriptome assay data were created from four tissues (liver, epigonal visceral, inguinal subcutaneous, and interscapular brown adipose tissue) of male offspring in relation to their parents’ obesity status.
Project description:Metabolic dysfunction-associated steatotic liver disease (MASLD), closely associated with obesity, can progress to metabolic dysfunction-associated steatohepatitis when the liver undergoes overt inflammatory damage. A-kinase anchoring protein 1 (AKAP1) has been shown to control lipid accumulation in brown adipocytes. However, the role of AKAP1 signaling in hepatic lipid metabolism and MASLD remains poorly understood. Here, we showed that hepatocyte-specific AKAP1 deficiency exacerbated hepatic steatosis and steatohepatitis in male mice subjected to a high-fat diet and fast-food diet, respectively. Mechanistically, AKAP1 directly phosphorylated and inactivated glycerol-3-phosphate acyltransferase 1 (GPAT1) in a PKA-dependent manner, thus suppressing lysophosphatidic acid (LPA) production. Increased endogenous LPA in hepatocytes promoted hepatocellular triglyceride (TG) synthesis and initiated pronounced inflammatory response in Kupffer cells. Restoring hepatic AKAP1 or repressing LPA levels via GPAT1 knockdown alleviated MASLD exacerbation. Overall, AKAP1 plays a protective role against MASLD by inhibiting GPAT1 activity, highlighting the potential of targeting AKAP1/PKA/GPAT1 signalosome for MASLD therapy.
Project description:Imeglimin is a recently developed anti-diabetic drug that could concurrently promote insulin secretion and insulin sensitivity, while its mechanisms of action are not fully understood. Here we show that imeglimin administration could protect mice from high fat diet-induced weight gain with enhanced energy expenditure and attenuated whitening of brown adipose tissue. Imeglimin administration led to significant alteration of gut microbiota, which included an increase of Akkermansia genus, with attenuation of obesity-associated gut pathologies. Ablation of microbiota by antibiotic treatment partially abrogated the insulin sensitizing effects of imeglimin, while not affecting its actions on body weight gain or brown adipose tissue. Collectively, our results characterize imeglimin as a potential agent promoting energy expenditure and gut integrity, providing new insights into its mechanisms of action.
Project description:Attainment of a brown adipocyte cell phenotype in white adipocytes, with their abundant mitochondria and increased energy expenditure potential, is a legitimate strategy for combating obesity. The unique transcriptional regulators of the primary brown adipocyte phenotype are unknown, limiting our ability to promote brown adipogenesis over white. In the present work, we used microarray analysis strategies to study primary preadipocytes, and we made the striking discovery that brown preadipocytes demonstrate a myogenic transcriptional signature, whereas both brown and white primary preadipocytes demonstrate signatures distinct from those found in immortalized adipogenic models. We found a plausible SIRT1-related transcriptional signature during brown adipocyte differentiation that may contribute to silencing the myogenic signature. In contrast to brown preadipocytes or skeletal muscle cells, white preadipocytes express Tcf21, a transcription factor that has been shown to suppress myogenesis and nuclear receptor activity. In addition, we identified a number of developmental genes that are differentially expressed between brown and white preadipocytes and that have recently been implicated in human obesity. The interlinkage between the myocyte and the brown preadipocyte confirms the distinct origin for brown versus white adipose tissue and also represents a plausible explanation as to why brown adipocytes ultimately specialize in lipid catabolism rather than storage, much like oxidative skeletal muscle tissue. Keywords: In vitro differentiation