Project description:The experiment is part of a project to study DNA repair process after ionizing radiation in organotypic 3-dimentional human bronchial epithlial cell culture. Human bronchial epithelial cells were grown in tissue culture flask (2D) or in matrics gel (3D). Three independent cultures were done for each condition.
Project description:Bulk RNA-Seq of all epithelial cell populations from both 2D-Gelatin and 3D-Matrigel conditions, namely 2D-Nkx2-1+EPCAM+ (lung epithelial progenitors derived on 2D gelatin), 3D-Nkx2-1+EPCAM+ (lung epithelial progenitors derived on 3D Matrigel), and 3D-Nkx2-1-EPCAM+ (non-lung epithelial progenitors derived on 3D Matrigel).
Project description:In order to gain insight into epithelial morphogenesis and the influence of culture geometry on gene expression patterns, Madin Darby Canine Kidney (MDCK) epithelial cells where grown in 2-dimensional (2D) culture or 3-dimensional (3D) culture . MDCK cells cultured in 2D were plated atop a pre-solidified type I collagen gel. Cells cultured under these conditions grew as flat monolayer sheets. In 3D culture, cells are embedded within type I collagen gel. Cells grown under these conditions form large spherical cysts with hollow central lumens. We anticipate, therefore, that these results provide insight into the mechanisms that regulate epithelial cystogenesis. Cells grown in the 2D or 3D geometries were collected from digested type I collagen gels on day 8. The 2D MDCK cells were treated as the control condition and there gene expression patterns were compared to those of 3D grown cells, which served as the experimental condition.
Project description:Analysis of 2D (transwell) and 3D (collagen type I) cultured MDCK cells and HGF (a MAPK activator). Traditional 2D cultures are fast and inexpensive but do no mimic natural niche/cell environment as well as the more laborious and costly 3D-cultures. 3D cultures, arguably, are better models for the study of developmental processes, such as tubulogenesis. Epithelial organs (such as kidney) develop via tubulogenesis, a process, at least in part, regulated by MAPK signaling. Therefore, 2D and 3D cells also treated with HGF plus MAPK inhibitors. Results provide insights into differential response to HGF-induced tubulogenesis depending on cell culture conditions (2D vs. 3D). 29 samples total: 2D and 3D control (untreated) in quadruplicate, respectively; 2D and 3D + HGF in quadruplicate, respectively; 2D + HGF + PD-98059 in quadruplicate; 3D + HGF + PD-98059 in triplicate; 2D + HGF + U0126 in triplicate; and 3D + HGF + U0126 in triplicate.
Project description:TGFbeta/TNFalpha treated spheroid A549 cultures are a model of the epithelial-mesenchymal transition (EMT). These experiments capture the changes in global gene expression that result from cells being induced to undergo EMT (3D control vs 3D treated), but also the differences in gene expression when A549 is grown in spheroid cultures (2D control vs 3D untreated). EMT is efficiently induced only in the spheroid culture model. A total of 8 samples are analyzed, corresponding to 4 conditions (2D control, 2D treated, 3D control, 3D treated) and 2 biological replicates.
Project description:Comparison of gene expression of different colon carcinoma cell lines under 2D and 3D culturing conditions Cells were seeded under 2D and 3D culturing condition. After seven days total RNA was isolated and used for cDNA synthesis.
Project description:We examined whether SATB1 functions as a global gene regulator in order to maintain the aggressive phenotype of the MDA-MB-231 cell line. We compared the gene expression profiles between control_shRNA-MDA-MB-231 cells, which express SATB1 at high levels, and SATB1_shRNA1-MDA-MB-231 in which the level of SATB1 was greatly downregulated by RNAi technology. This comparative studies were performed using two different platforms (Codelink and Affymetrix genechip) with two culture conditions either on plastic dish (2D) or on matrigel (3D) which allows cells to form a breast-like morphology only for non-aggressive cells. Keywords: Comparative studies on Control_shRNA and SATB1_shRNA1 expressing MDA-MB-231 from 2D or 3D culture. We examined control_shRNA-MDA-MB-231 cells and SATB1_shRNA1-MDA-MB-231 cells under two culture condition;on plastic dish(2D culture) and on Matrigel coated dish(3D culture). When SATB1 was depleted by RNAi technology, these normally aggressive cells exhibited normal breast like morphology on 3D. We used two different microarray platforms (Codelink and Affymetrix) to make expression data. Initial analysis of data and cross-platform comparison were performed using Codelink expression analysis and GeneSpring software. We provide ratio for control_shRNA/SATB1_shRNA1-MDA-MB-231 cells for 2D and 3D on this series.
Project description:Normal human bronchial epithelial cells were studied under four different conditions: control, pressure 30 cmH2O, AG1478 (1 microM), and pressure plus AG1478 at 1, 3, and 8 hours, all in the absence of exogenous EGF. Keywords: Normal human bronchial epithelial cells.
Project description:Background. Fallopian tube secretory epithelial cells (FTSECs) have been implicated as a cell-of-origin for high-grade serous epithelial ovarian cancer. However, there are relatively few in vitro models of this tissue type available for use in studies of FTSEC biology and malignant transformation. In vitro three-dimensional (3D) cell culture models aim to recreate the architecture and geometry of tissues in vivo and restore the complex network of cell-cell/cell-matrix interactions that occur throughout the surface of the cell membrane. Results. We have established and characterized 3D spheroid culture models of primary FTSECs. FTSEC spheroids contain central cores of hyaline matrix surrounded by mono- or multi-layer epithelial sheets. We found that 3D culturing alters the molecular characteristics of FTSECs compared to 2D cultures of the same cells. Gene expression profiling identified more than a thousand differentially expressed genes between 3D and 2D cultures of the same FTSEC lines. Pathways significantly under-represented in 3D FTSEC cultures were associated with cell cycle progression and DNA replication. This was also reflected in the reduced proliferative indices observed in 3D spheroids stained for the proliferation marker MIB1. Comparisons with gene expression profiles of fresh fallopian tube tissues revealed that 2D FTSEC cultures clustered with follicular phase tubal epithelium, whereas 3D FTSEC cultures clustered with luteal phase samples. Conclusions. This 3D model of fallopian tube secretory epithelial cells will advance our ability to study the underlying biology and etiology of fallopian tube tissues and the pathogenesis of high-grade serous epithelial ovarian cancer. 3 primary FTSEC lines were plated in 2D, or in 3D on polyHEMA coated plates