Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Examination of genome-wide, gene expression level differences among adult and fetal mammary sub-populations including fetal CD24high cells and adult CD49fhighCD24medium cells which harbor enriched mammary stem cell activity.
Project description:Examination of genome-wide, gene expression level differences among adult and fetal mammary sub-populations including fetal CD24high cells and adult CD49fhighCD24medium cells which harbor enriched mammary stem cell activity. A genome wide 12-plex expression array using linear-amplified (Eberwine) mRNA from dissociated and FACS sorted fetal and adult mammary gland populations. Samples represent independent pooled biological replicates.
Project description:Many normal adult tissues contain rare stem cells with extensive self-maintaining regenerative potential. During development, the stem cells of the hematopoietic and neural systems undergo intrinsically specified changes in their self-renewal potential. In the mouse, mammary stem cells with transplantable regenerative activity are first detectable a few days before birth. They share some phenotypic properties with their adult counterparts but are enriched in a subpopulation that displays a distinct gene expression profile. Here we show that fetal mammary epithelial cells have a greater direct and inducible growth potential than their adult counterparts. The latter feature is revealed in a novel culture system that enables large numbers of mammary stem cells with serially transplantable activity as well as in vitro clonogenic progenitors to be produced within 7 days from single fetal or adult input cells. We further show that these responses are highly dependent on novel factors produced by fibroblasts. These findings provide new avenues for elucidating mechanisms that regulate normal mammary epithelial stem cell properties at the single-cell level, how these change during development, and how their perturbation may contribute to transformation. We used microarrays to compare the transcriptome of E18.5 fetal and adult MRU-enriched mammary cells. Three biological replicates each of CD31-CD45-Ter119-BP-1-EpCAM+CD49f+ adult basal cells and CD31-CD45-Ter119-EpCAM++CD49f+ fetal cells were sorted. RNA was extracted and hybridized to the Agilent One-Color Gene Expression Arrays .
Project description:Many normal adult tissues contain rare stem cells with extensive self-maintaining regenerative potential. During development, the stem cells of the hematopoietic and neural systems undergo intrinsically specified changes in their self-renewal potential. In the mouse, mammary stem cells with transplantable regenerative activity are first detectable a few days before birth. They share some phenotypic properties with their adult counterparts but are enriched in a subpopulation that displays a distinct gene expression profile. Here we show that fetal mammary epithelial cells have a greater direct and inducible growth potential than their adult counterparts. The latter feature is revealed in a novel culture system that enables large numbers of mammary stem cells with serially transplantable activity as well as in vitro clonogenic progenitors to be produced within 7 days from single fetal or adult input cells. We further show that these responses are highly dependent on novel factors produced by fibroblasts. These findings provide new avenues for elucidating mechanisms that regulate normal mammary epithelial stem cell properties at the single-cell level, how these change during development, and how their perturbation may contribute to transformation. We used microarrays to compare the transcriptome of E18.5 fetal and adult MRU-enriched mammary cells.
Project description:We used the resolving power of single-cell transcriptional profiling to molecularly characterize the mouse adipose stem and progenitor cell-enriched, subcutaneous adipose stromal vascular fraction. We molecularly assessed CD45- CD31- SVF cells using the 10x Genomics Chromium (10x) platform.