Project description:Phosphate starvation/sufficient rice seedling, root or shoot Pi-starvation or Pi-sufficient stresses responsible rice genes, including previously unannotated genes were identified by Illumina mRNA-seq technology. 53 million reads from Pi-starvation or Pi-sufficient root or shoot tissues were uniquely mapped to the rice genome, and these included 40574 RAP3 transcripts in root and 39748 RAP3 transcripts in shoot. We compared our mRNA-seq expression data with that from Rice 44K oligomicroarray, and about 95.5% (root) and 95.4% (shoot) transcripts supported by the array were confirmed expression both by the array and by mRNA-seq, Moreover, 11888 (root) and 11098 (shoot) RAP genes which were not supported by array, were evidenced expression with mRNA-seq. Furthermore, we discovered 8590 (root) and 8193 (shoot) previously unannotated transcripts upon Pi-starvation and/or Pi-sufficient.
Project description:Improvement of chilling tolerance is a key strategy to face potential menace from abnormal temperature in rice production, which depends on the signaling network triggered by receptors. However, little is known about the QTL genes encoding membrane complexes for sensing cold. Here, Chilling-tolerance in Gengdao/japonica rice 1 (COG1) was isolated from a chromosome segment substitution line containing a QTL (qCS11-jap) for chilling sensitivity. The major gene COG1 was found to confer chilling tolerance in japonica rice. In natural rice populations, only the haplogroup1 encoded a functional COG1. Evolutionary analysis showed that COG1 originated from Chinese O. Rufipogon and was fixed in japonica rice during domestication. COG1, a membrane-localized LRR-RLP, targeted and activated the kinase OsSERL2 in a cold-induced manner, promoting chilling tolerance. Furthermore, the cold signal transmitted by COG1-OsSERL2 activates OsMAPK3 in the cytoplasm. Our findings reveal a cold-sensing complex, which mediates signaling network for the chilling defense in rice.
Project description:Rice blast disease caused by Magnaporthe oryzae is one of the most damaging diseases affecting rice productivity. Previously, we reported a novel M. oryzae- secreted protein MSP1, which triggers cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. To investigate the MSP1 induced defense response in rice at the protein level, we employed a label-free quantitative proteomic approach, in parallel with the flg22, which is a wellknown elicitor. Proteomics analysis using the MaxQuant-Perseus platform led to the identification of 4087 proteins of which 417 showed significant differences (multiple sample test, ANOVA p<0.05) in response to MSP1 and/or flg22 treatments. Functional annotation of the differential proteins showed that proteins related to the primary metabolism, secondary metabolism and lipid metabolism were strongly down-regulated, while elevated proteins were mainly associated with the stress response, chromatin remodeling, post-translational modification of proteins and signaling.
Project description:In this dataset, we include the expression data obtained from untreated and blast pathogen treated rice seedlings using a variety of blast resistant rice line H4, as well as the susceptible rice line Zhonger-Ruanzhan. These data are used to obtain 4087 genes that are differentially expressed in response to blast pathogen in both of rice lines,as well as 717 genes that are differentially expressed between different lines both in the moch-treated and the blast treated. We used microarrays to detail the global gene expression in leaf from blast resistant rice line and susceptible rice line