Project description:<p>Magnaporthe oryzae threatens global rice production, but master regulators coordinating immunity, metabolism, and growth remain elusive. Here, we identify OsWRKY39 as a central hub integrating blast resistance, phenylpropanoid metabolism, hormone homeostasis, and growth-defense trade-offs, distinct from OsWRKY45 (only activates diterpenoid phytoalexin biosynthesis). OsWRKY39 overexpression (OE) enhances blast resistance, while knockout (ko) lines are susceptible. DAP-seq/EMSA show OsWRKY39 directly targets W-box in promoters of OsPAL7, OsCKX2, OsJAZ9, and OsWRKY70. DLR assays reveal OsWRKY39 represses OsCKX2 and activates OsARF16 promoters. Transcriptomic/metabolomic analyses show OE plants reprogram phenylpropanoid metabolism to accumulate antimicrobial metabolites upon infection, whereas ko lines lose this control. OsWRKY39 elevates cytokinins (e.g., DHZR) to boost ATP/NADPH, suppresses excessive JA via OsJAZ9, and alleviates growth-resistance tradeoff via cytokinin-auxin crosstalk. BiFC confirms JA attenuates OsJAZ9-OsMYC2 interaction. Co-IP/phosphorylation assays show OsWRKY39 interacts with and is phosphorylated by OsMPK13. Our findings establish OsWRKY39 as a master regulator orchestrating rice immunity-metabolism-growth networks, minimizing growth costs and providing targets for high-yield, blast-resistant cereals.</p>
Project description:MicroRNAs (miRNAs) are small non-coding RNAs that function as post-transcriptional regulators of gene expression in eukaryotes. In rice, miR7695 targets an alternatively spliced transcript of natural resistance-associated macrophage protein 6 (OsNramp6) encoding an iron transporter whose expression is regulated by infection with the rice blast fungus Magnaporthe oryzae. Rice plants grown under high iron supply showed blast resistance, which supports that iron is a factor in controlling blast resistance by still unknown mechanisms. Here, iron accumulated near M. oryzae appressoria, the sites of pathogen entry, and in cells surrounding infected regions of the rice leaf. Activation-tagged MIR7695 rice plants (MIR7695-Ac) exhibited enhanced resistance to M. oryzae infection. RNA-seq analysis revealed that blast resistance in MIR7695-Ac plants was associated with strong induction of defense-related genes, including pathogenesis-related and diterpenoid biosynthetic genes. Levels of phytoalexins during pathogen infection were higher in MIR7695-Ac than wild-type plants. Early phytoalexin biosynthetic genes, OsCPS2 and OsCSP4, were highly upregulated in rice plants grown under high iron supply. Our data indicate that miR7695 positively regulates rice immunity while establishing links between defense and iron signaling in rice. MiR7695-mediated regulation of OsNramp6 has great potential for the development of strategies to control rice blast disease.
Project description:Improvement of chilling tolerance is a key strategy to face potential menace from abnormal temperature in rice production, which depends on the signaling network triggered by receptors. However, little is known about the QTL genes encoding membrane complexes for sensing cold. Here, Chilling-tolerance in Gengdao/japonica rice 1 (COG1) was isolated from a chromosome segment substitution line containing a QTL (qCS11-jap) for chilling sensitivity. The major gene COG1 was found to confer chilling tolerance in japonica rice. In natural rice populations, only the haplogroup1 encoded a functional COG1. Evolutionary analysis showed that COG1 originated from Chinese O. Rufipogon and was fixed in japonica rice during domestication. COG1, a membrane-localized LRR-RLP, targeted and activated the kinase OsSERL2 in a cold-induced manner, promoting chilling tolerance. Furthermore, the cold signal transmitted by COG1-OsSERL2 activates OsMAPK3 in the cytoplasm. Our findings reveal a cold-sensing complex, which mediates signaling network for the chilling defense in rice.
Project description:In rice, a number of resistance (R) genes that counter the blast fungus, Magnaporthe oryzae, have been cloned, but the mechanism by which they trigger disease resistance remains elusive. This is in part due to a lack of comprehensive transcriptome analyses during the resistance or disease progression. Here, we monitored the gene expression profiling in rice during its interactions with Magnaporthe by time-series transcriptome analyses. Distinct from previous studies, we focused on early infection stages within 24 hours post-inoculation. A comparison of those expression changes revealed a general difference in gene expression kinetics between compatible and incompatible interactions, and pointed to that the time when the pathogen just establishes its penetration into rice cells is a key point for the expressional changes. Such conclusions originated from the R gene Pid3-mediated immune responses were validated in the R gene Pi9-mediated responses, suggesting common molecular processes are shared by different R-mediated blast immunity. Our data highlighted the role of jasmonic acid (JA)-triggered signaling pathway (JA pathway) in the hormone signaling network for rice blast resistance. We confirmed that both exogenous and endogenous JA can induce the expression of many defense-related components revealed in above transcriptomic analyses and proved that the knock-down of OsCOI1 which encodes a JA receptor may deprive rice of the blast resistance mediated by R genes. Therefore, it is concluded that JA pathway plays an essential role in the establishment of blast resistance by modulating the expression of other defense-related components.
Project description:Rice blast disease is a major threat to rice production worldwide, but the mechanisms underlying rice resistance to the causal agent Magnaporthe oryzae remain elusive. In this whole-genome transcriptome study of rice early defense response to M. oryzae, we applied Affymetrix Rice Genome Genechip to compare the compatible and incompatible rice-M. oryzae interactions in 24 hours post-inoculation.
Project description:Nucleotide-binding site leucine-rich repeat (NLR) receptors perceive pathogen effectors and trigger plant immunity. However, the mechanisms underlying NLR-triggered defense responses remain obscure. The recently discovered Pigm locus in rice encodes a cluster of NLRs, including PigmR, which confers broad-spectrum resistance to blast fungus. Here, we identify PIBP1 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 1), an RRM (RNA-recognition motif) protein that specifically interacts with PigmR and other similar NLRs to trigger blast resistance. PigmR-promoted nuclear accumulation of PIBP1 ensures full blast resistance. We find that PIBP1 and a homolog, Os06 g02240, bind DNA and function as unconventional transcription factors at the promoters of the defense genes OsWAK14 and OsPAL1, activating their expression. Knockout of PIBP1 and Os06 g02240 greatly attenuated blast resistance. Collectively, our study discovers previously unappreciated RRM transcription factors that directly interact with NLRs to activate plant defense, establishing a direct link between transcriptional activation of immune responses with NLR-mediated pathogen perception.
Project description:Nucleotide-binding site leucine-rich repeat (NLR) receptors perceive pathogen effectors and trigger plant immunity. However, the mechanisms underlying NLR-triggered defense responses remain obscure. The recently discovered Pigm locus in rice encodes a cluster of NLRs, including PigmR, which confers broad-spectrum resistance to blast fungus. Here, we identify PIBP1 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 1), an RRM (RNA-recognition motif) protein that specifically interacts with PigmR and other similar NLRs to trigger blast resistance. PigmR-promoted nuclear accumulation of PIBP1 ensures full blast resistance. We find that PIBP1 and a homolog, Os06 g02240, bind DNA and function as unconventional transcription factors at the promoters of the defense genes OsWAK14 and OsPAL1, activating their expression. Knockout of PIBP1 and Os06g02240 greatly attenuated blast resistance. Collectively, our study discovers previously unappreciated RRM transcription factors that directly interact with NLRs to activate plant defense, establishing a direct link between transcriptional activation of immune responses with NLR-mediated pathogen perception
Project description:Nucleotide-binding site leucine-rich repeat (NLR) receptors perceive pathogen effectors and trigger plant immunity. However, the mechanisms underlying NLR-triggered defense responses remain obscure. The recently discovered Pigm locus in rice encodes a cluster of NLRs, including PigmR, which confers broad-spectrum resistance to blast fungus. Here, we identify PIBP1 (PigmR-INTERACTING and BLAST RESISTANCE PROTEIN 1), an RRM (RNA-recognition motif) protein that specifically interacts with PigmR and other similar NLRs to trigger blast resistance. PigmR-promoted nuclear accumulation of PIBP1 ensures full blast resistance. We find that PIBP1 and a homolog, Os06 g02240, bind DNA and function as unconventional transcription factors at the promoters of the defense genes OsWAK14 and OsPAL1, activating their expression. Knockout of PIBP1 and Os06g02240 greatly attenuated blast resistance. Collectively, our study discovers previously unappreciated RRM transcription factors that directly interact with NLRs to activate plant defense, establishing a direct link between transcriptional activation of immune responses with NLR-mediated pathogen perception