Project description:Nanomolar treatment with epigenetic drug combination induces genome-wide methylation and expression alterations in neuro-ectodermal cell lines [mRNA]
Project description:Nanomolar treatment with epigenetic drug combination induces genome-wide methylation and expression alterations in neuro-ectodermal cell lines [DNA methylation]
Project description:To study differentially expressed genes in neuro-ectodermal cell lines MYCN amplification (NMA) is the most important prognostic factor in neuroblastoma (NBL) patients, however 70% of advanced stage NBL are non-NMA and lack known driving oncogenic events. Gene expression profiles (HU133plus2.0 arrays, Affymetrix) of 17 NBL and 5 peripheral neuro-ectodermal cell lines were used to identify potential subgroups of NBL cell lines with a distinct gene signature. One group of non-NMA NBL cell lines was identified with a distinct gene expression profile and characterized by high expression of AXL. AXL is a tyrosine kinase receptor which plays a role in the metastatic process of cancer. We hypothesized that AXL contributes to the metastasizing potential of non-NMA NBL and tested if AXL silencing diminishes malignant properties of high AXL expressing cell lines. AXL was silenced in two non-NMA NBL cell lines by using a lentiviral shRNA construct that was able to transduce these cell lines with >90% infection efficiency. AXL mRNA expression level was efficiently knocked-down resulting in a severe decrease of migration of AXL positive cell lines GI-M-EN and SH-EP-2, and decreased invasion of GI-M-EN. Morphologically, AXL knockdown induced more rounded cells with a loss of contact. Intracellularly, we observed induction of stress fibers (immunofluorescence F-actin) in GI-M-EN. These changes in cytoskelet were associated with decreased migration. No effects were observed for cell proliferation, apoptosis or downstream pathways. In conclusion, AXL is identified as a possible mediator of NBL metastasis. Arrays were performed with 5 different PNET cell lines, which were used as controls for 17 NBL cell lines (GSE22771)
Project description:6 neuro-ectodermal cell lines were treated with 30 nM Decitabine (72 hour) and 25 nM trichostatin A (48 hour) and 6 were untreated 6 untreated and 6 treated, each sample labeled with Cy5 and normal blood pool with Cy3
Project description:To study differentially expressed genes in neuro-ectodermal cell lines MYCN amplification (NMA) is the most important prognostic factor in neuroblastoma (NBL) patients, however 70% of advanced stage NBL are non-NMA and lack known driving oncogenic events. Gene expression profiles (HU133plus2.0 arrays, Affymetrix) of 17 NBL and 5 peripheral neuro-ectodermal cell lines were used to identify potential subgroups of NBL cell lines with a distinct gene signature. One group of non-NMA NBL cell lines was identified with a distinct gene expression profile and characterized by high expression of AXL. AXL is a tyrosine kinase receptor which plays a role in the metastatic process of cancer. We hypothesized that AXL contributes to the metastasizing potential of non-NMA NBL and tested if AXL silencing diminishes malignant properties of high AXL expressing cell lines. AXL was silenced in two non-NMA NBL cell lines by using a lentiviral shRNA construct that was able to transduce these cell lines with >90% infection efficiency. AXL mRNA expression level was efficiently knocked-down resulting in a severe decrease of migration of AXL positive cell lines GI-M-EN and SH-EP-2, and decreased invasion of GI-M-EN. Morphologically, AXL knockdown induced more rounded cells with a loss of contact. Intracellularly, we observed induction of stress fibers (immunofluorescence F-actin) in GI-M-EN. These changes in cytoskelet were associated with decreased migration. No effects were observed for cell proliferation, apoptosis or downstream pathways. In conclusion, AXL is identified as a possible mediator of NBL metastasis.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.