Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods.
Project description:We identified that the adiponectin gene expression in rainbow trout muscle decreased by restrected feeding. In order to identify the genes differently expressed by the same treatment, micrarray analysis was conducted Fish were fed ad libitum once a week (RF, restricted feed group) or fed ad libitum twice per day (control). After 1 month, the muscle was desected from 4 individuals from each group.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring.
Project description:We identified that the adiponectin gene expression in rainbow trout muscle decreased by restrected feeding. In order to identify the genes differently expressed by the same treatment, micrarray analysis was conducted
Project description:Transcriptional profiling of rainbow trout muscle cells comparing muscle cells from small fish with muscle cells from large fish at two time periods. Two-condition experiment, small vs. large-fish muscle cells. Sept. and Dec. spawning fish. Biological replicates: 4 small replicates, 4 large replicates for each time period.
Project description:Transcriptional profiling of rainbow trout liver and muscle cells comparing small fish with large fish within a population of neomale offspring. Small vs. large-fish liver and muscle cells from neomale offspring. Biological replicates: 4 small replicates, 4 large replicates.
Project description:Purpose:Our data significantly advance understanding of heat stress regulatory mechanism of miRNA in the head kidney of rainbow trout Methods:miRNAs of rainbow trout were involved in heat stress were identified by high-throughput sequencing of six small RNA libraries of the kidney tissues under control (18℃) and heat-treated (24℃) conditions Results:high-throughput sequencing was performed to identify miRNAs responsive to heat stress. We obtained 41,991,119 and 43,882,123 raw reads and 39,756,736 and 42,538,331 clean reads from under control (18℃) and heat-treated (24℃) .A total of 392 conserved miRNAs and 989 novel miRNAs were identified, of which 78 miRNAs were expressed in different response to heat stress. In addition to, including 393 negative correlation miRNA-target gene pairs Conclusions:through high-throughput sequencing of the six libraries from head kidney tissue of rainbow trout, the expression level of miRNA has significant changes after heat stress.
Project description:Rainbow trout is a typical cold-water fish, with the intensification of global warming, high temperatures severely restrict the development of aquaculture in summer. Understanding the molecular regulation mechanisms of rainbow trout in response to heat stress will be salutary to alleviate heat stress-related damage. In the present study, we performed transcriptome analysis of liver tissues in rainbow trout under heat stress (24℃) and control (18℃) conditions to identify induced lncRNAs and pathways by heat stress. More than 658 million clean reads and 5,916 lncRNAs were identified from six liver libraries. A total of 927 novel lncRNAs were generated and 428 differentially expressed lncRNAs were screened through stringent thresholds. The RNA-seq results were verified by RT-qPCR. In addition, the regulatory network of important functional lncRNA-mRNA were constructed. GO and KEGG enrichment analysis of target gene of differentially expressed lncRNAs were performed. Many target genes involved in maintaining homeostasis or adapting to stress and stimuli were highly induced under heat stress. Several important regulatory pathways were involved in heat stress, including thyroid hormone signaling pathway, PI3K-Akt signaling pathway, estrogen signaling pathway, etc. This result broadens our understanding of lncRNA associated with heat stress and provides new insights into lncRNA-mediated regulation of rainbow trout heat stress.
Project description:Transcriptional profiling of rainbow trout liver cells comparing liver cells from small fish with liver cells from large fish at two time periods.
Project description:Rainbow trout (Oncorhynchus mykiss) is a typical cold-water fish, the development of rainbow trout aquaculture was severely hampered via the high temperature in summer. Understanding the regulatory mechanism of rainbow trout response to chronic heat stress can provide a theoretical basis for formulating measures to relieve heat stress. In the study, changes in the biochemical parameters revealed that a strong stress response occurred in rainbow trout at 24 °C, the organisms stress defense system was activated, and the immune system was also affected. Proteome of rainbow trout liver tissues under heat stress (24 °C) and control conditions (18 °C) were performed using DIA/SWATH. A total of 390 DEPs were identified by strict threshold (q-value <0.05 and fold changes >1.5), among them 175 were up-regulated and 225 were down-regulated. Some proteins related to HSP, metabolism and immunity were identified. GO analysis showed that some proteins that were highly induced to express at high temperature were involved in the regulation of cell homeostasis, metabolism, adaptive stress and stimulation. KEGG analysis shows that some pathways play an important role in the regulation of heat stress, such as metabolic pathway, protein processing in endoplasmic reticulum pathway, PPAR signaling pathway and complement and coagulation cascades pathway, etc. PPI network analysis shows HSP90b1 and C3 maybe cooperative to protect the integrity of cell membrane function under heat stress. Our finding provide a comprehensive review of protein expression of rainbow trout liver under heat stress, which helps to formulate strategies for rainbow trout to relieve heat stress during high temperature in summer.