Project description:This SuperSeries is composed of the following subset Series: GSE29870: Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells (expression data) GSE29872: Cancer-related epigenome changes associated with reprogramming to induced pluripotent stem cells (methylation data) Refer to individual Series
Project description:he ability to induce pluripotent stem cells from committed, somatic human cells provides tremendous potential for regenerative medicine. However, there is a defined neoplastic potential inherent to such reprogramming that must be understood and may provide a model for understanding key events in tumorigenesis. Using genome-wide assays, we identify cancer-related epigenetic abnormalities that arise early during reprogramming and persist in induced pluripotent stem cell (iPS) clones. These include hundreds of abnormal gene silencing events, patterns of aberrant responses to epigenetic-modifying drugs resembling those for cancer cells, and presence in iPS and partially reprogrammed cells of cancer-specific gene promoter DNA methylation alterations. Our findings suggest that by studying the process of induced reprogramming, we may gain significant insight into the origins of epigenetic gene silencing associated with human tumorigenesis, and add to means of assessing iPS for safety. Methylation was analyzed using Illumina's 27k Infinium platform for direct detection of methylation after bisulfite conversion. The overall methylation status was determined for several iPS lines and the pool cells from which they are derived. These methylation levels can be compared directly to those of cultured stem cells, differentiated cells and cancer cell lines.
Project description:The ability to induce pluripotent stem cells from committed, somatic human cells provides tremendous potential for regenerative medicine. However, there is a defined neoplastic potential inherent to such reprogramming that must be understood and may provide a model for understanding key events in tumorigenesis. Using genome-wide assays, we identify cancer-related epigenetic abnormalities that arise early during reprogramming and persist in induced pluripotent stem cell (iPS) clones. These include hundreds of abnormal gene silencing events, patterns of aberrant responses to epigenetic-modifying drugs resembling those for cancer cells, and presence in iPS and partially reprogrammed cells of cancer-specific gene promoter DNA methylation alterations. Our findings suggest that by studying the process of induced reprogramming, we may gain significant insight into the origins of epigenetic gene silencing associated with human tumorigenesis, and add to means of assessing iPS for safety. Direct expression comparison of iPS lines, cultured stem cell lines and normal differentiated cells. Re-expression experiments with 5-aza-2′-deoxycytidine (AZA) and trichostatin A (TSA) to identify hypermethylated genes.
Project description:Pluripotent stem cells evade replicative senescence, whereas other primary cells lose their proliferation and differentiation potential after a limited number of cell divisions M-bM-^@M-^S and this is accompanied by specific senescence-associated DNA methylation (SA-DNAm) changes. Here, we investigate SA-DNAm changes in mesenchymal stromal cells (MSC) upon long-term culture, irradiation-induced senescence, immortalization and reprogramming into induced pluripotent stem cells (iPSC) using high density HumanMethylation450 BeadChips. SA-DNAm changes are highly reproducible and occur particularly in intergenic and non-promoter regions of developmental genes. We demonstrate that ionizing irradiation, although associated with a very similar senescence phenotype, does not affect SA-DNAm. Furthermore, overexpression of the catalytic subunit of the human telomerase (TERT) or conditional immortalization with a doxycycline-inducible system (TERT and SV40 TAg) result in telomere extension but do not influence SA-DNAm. In contrast, we demonstrate that reprogramming into iPSC prevented SA-DNAm changes. Our results indicate that replicative senescence is associated with an epigenetically controlled process which stalls cells in a particular differentiated state, whereas irradiation-induced senescence and immortalization are not causally related to this process. Absence of SA-DNAm in pluripotent cells may play a central role for their escape from cellular senescence. Samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip
Project description:he ability to induce pluripotent stem cells from committed, somatic human cells provides tremendous potential for regenerative medicine. However, there is a defined neoplastic potential inherent to such reprogramming that must be understood and may provide a model for understanding key events in tumorigenesis. Using genome-wide assays, we identify cancer-related epigenetic abnormalities that arise early during reprogramming and persist in induced pluripotent stem cell (iPS) clones. These include hundreds of abnormal gene silencing events, patterns of aberrant responses to epigenetic-modifying drugs resembling those for cancer cells, and presence in iPS and partially reprogrammed cells of cancer-specific gene promoter DNA methylation alterations. Our findings suggest that by studying the process of induced reprogramming, we may gain significant insight into the origins of epigenetic gene silencing associated with human tumorigenesis, and add to means of assessing iPS for safety.
Project description:The ability to induce pluripotent stem cells from committed, somatic human cells provides tremendous potential for regenerative medicine. However, there is a defined neoplastic potential inherent to such reprogramming that must be understood and may provide a model for understanding key events in tumorigenesis. Using genome-wide assays, we identify cancer-related epigenetic abnormalities that arise early during reprogramming and persist in induced pluripotent stem cell (iPS) clones. These include hundreds of abnormal gene silencing events, patterns of aberrant responses to epigenetic-modifying drugs resembling those for cancer cells, and presence in iPS and partially reprogrammed cells of cancer-specific gene promoter DNA methylation alterations. Our findings suggest that by studying the process of induced reprogramming, we may gain significant insight into the origins of epigenetic gene silencing associated with human tumorigenesis, and add to means of assessing iPS for safety.
Project description:The variation among induced pluripotent stem cells (iPSCs) in their differentiation capacity to specific lineages is frequently attributed to somatic memory. In this study, we compared hematopoietic differentiation capacity of 35 human iPSC lines derived from four different tissues and four embryonic stem cell lines. The analysis revealed that hematopoietic commitment capacity (PSCs to hematopoietic precursors) is correlated with the expression level of the IGF2 gene independent of the iPSC origins. In contrast, maturation capacity (hematopoietic precursors to mature blood) is affected by iPSC origin; blood-derived iPSCs showed the highest capacity. However, some fibroblast-derived iPSCs showed higher capacity than blood-derived clones. Tracking of DNA methylation changes during reprogramming reveals that maturation capacity is highly associated with aberrant DNA methylation acquired during reprogramming, rather than the types of iPSC origins. These data demonstrated that variations in the hematopoietic differentiation capacity of iPSCs are not attributable to somatic memories of their origins. Undifferentiated human induced pluripotent stem cells (N = 23)