Project description:Degradation of bis(2-chloroethyl) ether (BCEE) was observed to occur in two bacterial strains. Strain ENV481, a Xanthobacter sp. strain, was isolated by enrichment culturing of samples from a Superfund site located in the northeastern United States. The strain was able to grow on BCEE or 2-chloroethylethyl ether as the sole source of carbon and energy. BCEE degradation in strain ENV481 was facilitated by sequential dehalogenation reactions resulting in the formation of 2-(2-chloroethoxy)ethanol and diethylene glycol (DEG), respectively. 2-Hydroxyethoxyacetic acid was detected as a product of DEG catabolism by the strain. Degradation of BCEE by strain ENV481 was independent of oxygen, and the strain was not able to grow on a mixture of benzene, ethylbenzene, toluene, and xylenes, other prevalent contaminants at the site. Another bacterial isolate, Pseudonocardia sp. strain ENV478 (S. Vainberg et al., Appl. Environ. Microbiol. 72:5218-5224, 2006), degraded BCEE after growth on tetrahydrofuran or propane but was not able to grow on BCEE as a sole carbon source. BCEE degradation by strain ENV478 appeared to be facilitated by a monooxygenase-mediated O-dealkylation mechanism, and it resulted in the accumulation of 2-chloroacetic acid that was not readily degraded by the strain.
Project description:Acetone carboxylase is the key enzyme of bacterial acetone metabolism, catalyzing the condensation of acetone and CO(2) to form acetoacetate. In this study, the acetone carboxylase of the purple nonsulfur photosynthetic bacterium Rhodobacter capsulatus was purified to homogeneity and compared to that of Xanthobacter autotrophicus strain Py2, the only other organism from which an acetone carboxylase has been purified. The biochemical properties of the enzymes were virtually indistinguishable, with identical subunit compositions (alpha(2)beta(2)gamma(2) multimers of 85-, 78-, and 20-kDa subunits), reaction stoichiometries (CH(3)COCH(3) + CO(2) + ATP-->CH(3)COCH(2)COO(-) + H(+) + AMP + 2P(i)), and kinetic properties (K(m) for acetone, 8 microM; k(cat) = 45 min(-1)). Both enzymes were expressed to high levels (17 to 25% of soluble protein) in cells grown with acetone as the carbon source but were not present at detectable levels in cells grown with other carbon sources. The genes encoding the acetone carboxylase subunits were identified by transposon mutagenesis of X. autotrophicus and sequence analysis of the R. capsulatus genome and were found to be clustered in similar operons consisting of the genes acxA (beta subunit), acxB (alpha subunit), and acxC (gamma subunit). Transposon mutagenesis of X. autotrophicus revealed a requirement of sigma(54) and a sigma(54)-dependent transcriptional activator (AcxR) for acetone-dependent growth and acetone carboxylase gene expression. A potential sigma(54)-dependent promoter 122 bp upstream of X. autotrophicus acxABC was identified. An AcxR gene homolog was identified 127 bp upstream of acxA in R. capsulatus, but this activator lacked key features of sigma(54)-dependent activators, and the associated acxABC lacked an apparent sigma(54)-dependent promoter, suggesting that sigma(54) is not required for expression of acxABC in R. capsulatus. These studies reveal a conserved strategy of ATP-dependent acetone carboxylation and the involvement of transcriptional enhancers in acetone carboxylase gene expression in gram-negative acetone-utilizing bacteria.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces.