Project description:Mutations in APC or β-catenin that cause aberrant activation of Wnt signaling are responsible for the initiation of colorectal tumor development. LGR5 is specifically expressed in stem cells of the intestine, stomach and hair follicle, and plays essential roles in maintaining tissue homeostasis. LGR5-positive stem cells have been shown to be responsible for the intestinal adenoma initiated by some mutations in APC . Furthermore, it has recently been reported that Lgr5, which is associated with the Frizzled/Lrp Wnt receptor complex, interacts with R-spondins and thereby activates Wnt signaling. However, the function of LGR5 in colorectal tumorigenesis has been unclear. Here we show that LGR5 is required for the tumorigenicity of colorectal cancer cells. We also show that the transcription factor GATA6 directly enhances the expression of LGR5. DLD1 cells were infected with a lentivirus expressing an shRNA targeting GATA6 or LGR5.
Project description:Transcription profiling by array of human CD4 positive and CD8 positive T cells selected by positive or negative immunomagnetic cell selection
Project description:Mutations in APC or β-catenin that cause aberrant activation of Wnt signaling are responsible for the initiation of colorectal tumor development. LGR5 is specifically expressed in stem cells of the intestine, stomach and hair follicle, and plays essential roles in maintaining tissue homeostasis. LGR5-positive stem cells have been shown to be responsible for the intestinal adenoma initiated by some mutations in APC . Furthermore, it has recently been reported that Lgr5, which is associated with the Frizzled/Lrp Wnt receptor complex, interacts with R-spondins and thereby activates Wnt signaling. However, the function of LGR5 in colorectal tumorigenesis has been unclear. Here we show that LGR5 is required for the tumorigenicity of colorectal cancer cells. We also show that the transcription factor GATA6 directly enhances the expression of LGR5.
Project description:This study has two components: (1) Human colon adenoma organoids (n=4 patients) were dissociated into single cells. Cells were incubated with a magnetic bead bound to an LGR5 antibody and run through a magnetic column. Magnet bound cells and flow through negative (FTN) cells were obtained. Magnet bound and FTN cells were incubated with an APC-check reagent (which binds to the magnetic bead on the LGR5 antibody) and DAPI, before being sorted by flow cytometry. 3 populations of live (DAPI-) cells were collected: FTN: Flow through negative. LGR5 negative by magnet and by flow cytometry SortedNeg: Magnet bound cells that were negative for LGR5 by flow cytometry SortedPos: Magnet bound cells that were positive for LGR5 by flow cytometry (2) Human colon organoids, as well as the tissue the organoid was derived from and adjcacent normal tissue (from n=19) were also profiled for known colorectal cancer associated mutations using the Qiagen Qiaseq Colorectal Cancer Panel, which provides targeted sequencing information for 71 genes.