Project description:This SuperSeries is composed of the following subset Series: GSE38152: sibling aHDF-iPSC clones derived from the same fibroblasts GSE38153: aHDF- and PB-iPSC clones from the same individuals Refer to individual Series
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals. Undifferentiated aHDF- and PB-iPSCs from the same individuals (two Parkinson’s disease patients (PD #1 and PD #2) and one adult healthy donor (donor91))
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals.
Project description:Hepatocytes generated from human induced pluripotent stem cells (hiPSCs) are unprecedented resources for pharmaceuticals and cell therapy. However, little attention has so far been paid to variations among hiPSC lines in terms of their hepatic differentiation. We developed an improved hepatic differentiation protocol and compared multiple hiPSC lines. This comparison indicated that the hepatic differentiation propensity varies among sibling hiPSC clones derived from the same adult human dermal fibroblasts (aHDFs). In addition, hiPSC clones derived from peripheral blood cells (PB-iPSCs) consistently showed good hepatic differentiation efficiency, whereas many hiPSC clones from adult dermal fibroblasts (aHDF-iPSCs) showed poor hepatic differentiation. However, when we compared hiPSCs from blood and dermal fibroblasts from the same individuals, we found that variations in hepatic differentiation were largely attributable to donor differences, rather than to the types of the original cells. In order to understand the molecular mechanisms underlying the observed variations in hepatic differentiation, we performed microarray analyses of sibling aHDF-iPSC clones, and aHDF- and PB-iPSC clones from the same individuals. sibling aHDF-iPSC clones (201B6 and 201B7; derived from the same aHDFs) (1) undifferentiated state (n=4, biological replicate #1-#4) (2) CXCR4-positive cell populations sorted by flowcytometry after 7 days of endodermal differentiation (n=4, biological replicate #1-#4) (3) CXCR4-negative cell populations sorted by flowcytometry after 7 days of endodermal differentiation (n=4, biological replicate #1-#4)
Project description:ATAC-seq samples from 2 species and 2 cell types were generated to study cis-regulatory element evolution. Briefly, previously generated urinary stem cell derived iPS-cells (Homo sapiens) of 2 human individuals and fibroblast derived cynomolgus macaque iPSCs (Macaca fascicularis) of 2 individuals (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 2014). The NPC lines were cultured in NPC proliferation medium and passaged 2 - 4 times until they were dissociated and subjected to ATAC-seq together with the respective iPSC clones. ATAC-seq libraries were generated using the Omni-ATAC protocol (Corces et al. 2017) with minor modifications.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:RNA-seq samples from 3 species across a differentiation from induced pluripotent stem cells to neural progenitor cells were generated to study gene expression evolution. Briefly, previously generated urinary stem cell derived iPSCs of 3 human (Homo sapiens) individuals (3 clones), 1 gorilla (Gorilla gorilla) individual and fibroblast derived cynomolgus macaque (Macaca fascicularis) iPSCs of 2 individuals (4 clones) (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 2014). Bulk RNA-seq libraries of iPSCs and NPCs were generated using prime-seq protocol (Janjic et al. 2022).