Project description:Six sequenced and annotated genomes of Paenibacillus larvae phages isolated from the combs of American foulbrood-diseased beehives are 37 to 45 kbp and have approximately 42% G+C content and 60 to 74 protein-coding genes. Phage Lily is most divergent from Diva, Rani, Redbud, Shelly, and Sitara.
Project description:This study analysed the temporal transcriptional response of L. lactis UC509.9 undergoing infection with either Tuc2009 or c2, representing phages of two different species (P335 and c2, respectively) of the family Siphoviridae. For the first time, to our knowledge, both DNA microarrays of the host and high resolution tiling arrays of each phage were used provide corresponding data sets of the entire transcriptome at various points post-infection.
Project description:Intestinal phages are abundant and important components of gut microbiota, yet the isolated and characterized representatives that infect abundant gut bacteria are sparse. Here we describe the isolation of human intestinal phages infecting Bacteroidesuniformis. Bacteroides is one of the most common bacterial groups in the global human gut microbiota; however, to date not many Bacteroides specific phages are known. Phages isolated in this study belong to a novel viral genus, Bacuni, within the Siphoviridae family. Their genomes encode diversity-generating retroelements (DGR), which were shown in other bacteriophages to promote phage adaptation to rapidly changing environmental conditions and to broaden their host range. Three isolated phages showed 99.83% genome identity but one of them infected a distinct B. uniformis strain. The tropism of Bacuni phages appeared to be dependent on the interplay of DGR mediated sequence variations of gene encoding putative phage fimbrial tip proteins and mutations in host genes coding for outer-membrane proteins. We found prophages with up to 85% amino acid similarity over two-thirds of the Bacuni phage genome in the B. acidifaciens and Prevotella sp. genomes. Despite the abundance of Bacteroides within the human microbiome, we found Bacuni phages only in a limited subset of published gut metagenomes.
Project description:Acinetobacter baumannii is an opportunistic pathogen that presents a serious clinical challenge due to its increasing resistance to all available antibiotics. Phage therapy has been introduced recently to treat antibiotic-incurable A. baumannii infections. In search for new A. baumannii specific bacteriophages, 20 clinical A. baumannii strains were used in two pools in an attempt to enrich phages from sewage. The enrichment resulted in induction of resident prophage(s) and three temperate bacteriophages, named vB_AbaS_fEg-Aba01, vB_AbaS_fLi-Aba02 and vB_AbaS_fLi-Aba03, all able to infect only one strain (#6597) of the 20 clinical strains, were isolated. Morphological characteristics obtained by transmission electron microscopy together with the genomic information revealed that the phages belong to the family Siphoviridae. The ca. 35 kb genomic sequences of the phages were >99% identical to each other. The linear ds DNA genomes of the phages contained 10 nt cohesive end termini, 52-54 predicted genes, an attP site and one tRNA gene each. A database search revealed an >99% identical prophage in the genome of A.baumannii strain AbPK1 (acc. no. CP024576.1). Over 99% identical prophages were also identified from two of the original 20 clinical strains (#5707 and #5920) and both were shown to be spontaneously inducible, thus very likely being the origins of the isolated phages. The phage vB_AbaS_fEg-Aba01 was also able to lysogenize the susceptible strain #6597 demonstrating that it was fully functional. The phages showed a very narrow host range infecting only two A.baumannii strains. In conclusion, we have isolated and characterized three novel temperate Siphoviridae phages that infect A.baumannii.
Project description:BACKGROUND:Members of the Roseobacter lineage are a major group of marine heterotrophic bacteria because of their wide distribution, versatile lifestyles and important biogeochemical roles. Bacteriophages, the most abundant biological entities in the ocean, play important roles in shaping their hosts' population structures and mediating genetic exchange between hosts. However, our knowledge of roseophages (bacteriophages that infect Roseobacter) is far behind that of their host counterparts, partly reflecting the need to isolate and analyze the phages associated with this ecologically important bacterial clade. METHODS:vB_DshS-R4C (R4C), a novel virulent roseophage that infects Dinoroseobacter shibae DFL12T, was isolated with the double-layer agar method. The phage morphology was visualized with transmission electron microscopy. We characterized R4C in-depth with a genomic analysis and investigated the distribution of the R4C genome in different environments with a metagenomic recruitment analysis. RESULTS:The double-stranded DNA genome of R4C consists of 36,291 bp with a high GC content of 66.75%. It has 49 genes with low DNA and protein homologies to those of other known phages. Morphological and phylogenetic analyses suggested that R4C is a novel member of the family Siphoviridae and is most closely related to phages in the genus Cronusvirus. However, unlike the Cronusvirus phages, R4C encodes an integrase, implying its ability to establish a lysogenic life cycle. A terminal analysis shows that, like that of λ phage, the R4C genome utilize the 'cohesive ends' DNA-packaging mechanism. Significantly, homologues of the R4C genes are more prevalent in coastal areas than in the open ocean. CONCLUSIONS:Information about this newly discovered phage extends our understanding of bacteriophage diversity, evolution, and their roles in different environments.
Project description:Here, we report the genome sequence of a Siphoviridae phage named vB_SauS_BaqSau1 (BaqSau1), infecting Staphylococcus aureus Phage BaqSau1 was isolated from a sewage water treatment plant in Sahagún, Córdoba, Colombia. It has a double-stranded DNA (dsDNA) genome of 44,384 bp with 67 predicted genes, including a lysin containing a CHAP (cysteine, histidine-dependent amidohydrolase/peptidase) domain.
Project description:Bacteriophage (phage) therapy is expected to become an alternative therapy for Pseudomonas aeruginosa infections. P. aeruginosa phage KPP23 is a newly isolated phage belonging to the family Siphoviridae and may be a therapeutic phage candidate. We report its complete genome, which comprises 62,774 bp of double-stranded DNA containing 95 open reading frames.