Project description:In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes only slightly to X-repression. Thus H4K20me1 by itself is not a downstream effector of the DCC. In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1.
Project description:Dosage compensation in Caenorhabditis elegans equalizes X-linked gene expression between XX hermaphrodites and XO males. The process depends on a condensin-containing dosage compensation complex (DCC), which binds the X chromosomes in hermaphrodites to repress gene expression. Condensin IDC and an additional five DCC components must be present on the X during early embryogenesis in hermaphrodites to establish dosage compensation. However, whether the DCC's continued presence is required to maintain the repressed state once established is unknown. Beyond the role of condensin IDC in X chromosome compaction, additional mechanisms contribute to X-linked gene repression. DPY-21, a non-condensin IDC DCC component, is an H4K20me2/3 demethylase whose activity enriches the repressive histone mark, H4 lysine 20 monomethylation on the X chromosomes. In addition, CEC-4 tethers H3K9me3-rich chromosomal regions to the nuclear lamina, which also contributes to X-linked gene repression. To investigate the necessity of condensin IDC during the larval and adult stages of hermaphrodites, we used the auxin-inducible degradation system to deplete the condensin IDC subunit DPY-27. While DPY-27 depletion in the embryonic stages resulted in lethality, DPY-27 depleted larvae and adults survive. In these DPY-27 depleted strains, condensin IDC was no longer associated with the X chromosome, the X became decondensed, and the H4K20me1 mark was gradually lost, leading to X-linked gene derepression. These results suggest that the stable maintenance of dosage compensation requires the continued presence of condensin IDC. A loss-of-function mutation in cec-4, in addition to the depletion of DPY-27 or the genetic mutation of dpy-21, led to even more significant increases in X-linked gene expression, suggesting that tethering heterochromatic regions to the nuclear lamina helps stabilize repression mediated by condensin IDC and H4K20me1.
Project description:Mechanisms of X chromosome dosage compensation have been studied in model organisms with distinct sex chromosome ancestry. However, the diversity of mechanisms as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, where dosage compensation is accomplished by an X chromosome specific condensin that belongs to the family of structural maintenance of chromosomes (SMC) complexes. By combining a phylogenetic analyses of the C. elegans dosage compensation complex with a comparative analysis of its epigenetic signatures, such as X-specific topologically associating domains (TADs) and enrichment of H4K20me1, we show that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis following an SMC-4 duplication. Unexpectedly, we found an independent duplication of SMC-4 in Pristionchus pacificus along with X-specific TADs and H4K20me1 enrichment, which suggests that condensin-mediated dosage compensation evolved more than once in nematodes. Differential expression analysis between sexes in several nematode species indicates that dosage compensation itself precedes the evolution of X-specific condensins. In Rhabditina, X-specific condensins may have evolved in the presence of an existing mechanism linked to H4K20 methylation as Oscheius tipulae X chromosomes are enriched for H4K20me1 without SMC-4 duplication or TADs. In contrast, Steinernema hermaphroditum lacks H4K20me1 enrichment, SMC-4 duplication, and TADs. Together, our results indicate that dosage compensation mechanisms continue to evolve in species with shared X chromosome ancestry, and SMC complexes may have been co-opted at least twice in nematodes, suggesting that the process of evolving chromosome wide gene regulatory mechanisms are constrained.
Project description:Mechanisms of X chromosome dosage compensation have been studied in model organisms with distinct sex chromosome ancestry. However, the diversity of mechanisms as a function of sex chromosome evolution is largely unknown. Here, we anchor ourselves to the nematode Caenorhabditis elegans, where dosage compensation is accomplished by an X chromosome specific condensin that belongs to the family of structural maintenance of chromosomes (SMC) complexes. By combining a phylogenetic analyses of the C. elegans dosage compensation complex with a comparative analysis of its epigenetic signatures, such as X-specific topologically associating domains (TADs) and enrichment of H4K20me1, we show that the condensin-mediated mechanism evolved recently in the lineage leading to Caenorhabditis following an SMC-4 duplication. Unexpectedly, we found an independent duplication of SMC-4 in Pristionchus pacificus along with X-specific TADs and H4K20me1 enrichment, which suggests that condensin-mediated dosage compensation evolved more than once in nematodes. Differential expression analysis between sexes in several nematode species indicates that dosage compensation itself precedes the evolution of X-specific condensins. In Rhabditina, X-specific condensins may have evolved in the presence of an existing mechanism linked to H4K20 methylation as Oscheius tipulae X chromosomes are enriched for H4K20me1 without SMC-4 duplication or TADs. In contrast, Steinernema hermaphroditum lacks H4K20me1 enrichment, SMC-4 duplication, and TADs. Together, our results indicate that dosage compensation mechanisms continue to evolve in species with shared X chromosome ancestry, and SMC complexes may have been co-opted at least twice in nematodes, suggesting that the process of evolving chromosome wide gene regulatory mechanisms are constrained.
Project description:In Caenorhabditis elegans, the dosage compensation complex (DCC) specifically binds to and represses transcription from both X chromosomes in hermaphrodites. The DCC is composed of an X-specific condensin complex that interacts with several proteins. During embryogenesis, DCC starts localizing to the X chromosomes around the 40-cell stage, and is followed by X-enrichment of H4K20me1 between 100-cell to comma stage. Here, we analyzed dosage compensation of the X chromosome between sexes, and the roles of dpy-27 (condensin subunit), dpy-21 (non-condensin DCC member), set-1 (H4K20 monomethylase) and set-4 (H4K20 di-/tri-methylase) in X chromosome repression using mRNA-seq and ChIP-seq analyses across several developmental time points. We found that the DCC starts repressing the X chromosomes by the 40-cell stage, but X-linked transcript levels remain significantly higher in hermaphrodites compared to males through the comma stage of embryogenesis. Dpy-27 and dpy-21 are required for X chromosome repression throughout development, but particularly in early embryos dpy-27 and dpy-21 mutations produced distinct expression changes, suggesting a DCC independent role for dpy-21. We previously hypothesized that the DCC increases H4K20me1 by reducing set-4 activity on the X chromosomes. Accordingly, in the set-4 mutant, H4K20me1 increased more from the autosomes compared to the X, equalizing H4K20me1 level between X and autosomes. H4K20me1 increase on the autosomes led to a slight repression, resulting in a relative effect of X derepression. H4K20me1 depletion in the set-1 mutant showed greater X derepression compared to equalization of H4K20me1 levels between X and autosomes in the set-4 mutant, indicating that H4K20me1 level is important, but X to autosomal balance of H4K20me1 contributes only slightly to X-repression. Thus H4K20me1 by itself is not a downstream effector of the DCC. In summary, X chromosome dosage compensation starts in early embryos as the DCC localizes to the X, and is strengthened in later embryogenesis by H4K20me1. RNA-Seq profiles of C. elegans wild type hermaphrodite, mixed sex, at 5 time points and dpy-27, set-4, dpy-21, set-1 and RNAi at 2-3 time points with 3-4 replicates each. RNA-Seq profiles of C. elegans. Strains are N2 (wild type), BS553 fog-2(oz40) V, CB428 dpy-21(e428) V, MK4 dpy-27(y56) III, MT14911 set-4 (n4600) II, SS1075 set-1(tm1821)/hT2g[bli-4(e937) let-?(q782) qIs48] (I;III). Set-1 collections made as heterozygotes and dpy-27(y56) homozygotes. Spike in RNA-seq libraries have AF16 wild type C. briggsae L1s added at a 1:10 ratio. Timepoints are early embryos (synchronized collection, <40 cells), comma embryos (synchronized early embryos aged for 4 hours), mixed embryos (mixed stage embryos from unsynchronized population), L1 (synchronized L1 larvae), L3 (synchronized L3 larvae), and YA (synchronized young adults, collected before embryos present in hermaphrodite gonad). Biological replicates for each strain/stage listed separately. ChIP-seq profiles of C. elegans DCC subunit dpy-27, H4K20me1 histone modification and RNA pol II large subunit ama-1 in 3-6 replicates from mixed stage (unsynchronized) embryos and synchronized L3 larvae. Corresponding inputs are labelled with "Input_" plus ChIP name.
Project description:Dosage Compensation is required to correct for uneven gene dose between the sexes. We utilized global run-on sequencing (GRO-seq) to examine how Caenorhabditis elegans dosage compensation reduces transcription of X-linked genes. To facilitate these experiments, we required accurate 5’-ends of genes that have been missing due to a co-transcriptional trans-splicing event common in nematodes. We developed a modified GRO-seq protocol to identify TSSs that are supported by transcription, and determined that TSSs lie more than 1 kb upstream of the previously annotated TSS for nearly one-quarter of all genes. We then investigated the changes that occur in transcriptionally engaged RNA Polymerase when dosage compensation is disrupted, and find that dosage compensation controls recruitment of RNA Polymerase to X-linked genes.
Project description:Dosage Compensation is required to correct for uneven gene dose between the sexes. We utilized global run-on sequencing (GRO-seq) to examine how Caenorhabditis elegans dosage compensation reduces transcription of X-linked genes. To facilitate these experiments, we required accurate 5M-bM-^@M-^Y-ends of genes that have been missing due to a co-transcriptional trans-splicing event common in nematodes. We developed a modified GRO-seq protocol to identify TSSs that are supported by transcription, and determined that TSSs lie more than 1 kb upstream of the previously annotated TSS for nearly one-quarter of all genes. We then investigated the changes that occur in transcriptionally engaged RNA Polymerase when dosage compensation is disrupted, and find that dosage compensation controls recruitment of RNA Polymerase to X-linked genes. GRO-seq experiments (two biological replicates) were performed in nuclei from many wild-type states and a dosage compensation mutant
Project description:Dosage Compensation is required to correct for uneven gene dose between the sexes. We utilized global run-on sequencing (GRO-seq) to examine how Caenorhabditis elegans dosage compensation reduces transcription of X-linked genes. To facilitate these experiments, we required accurate 5’-ends of genes that have been missing due to a co-transcriptional trans-splicing event common in nematodes. We developed a modified GRO-seq protocol to identify TSSs that are supported by transcription, and determined that TSSs lie more than 1 kb upstream of the previously annotated TSS for nearly one-quarter of all genes. We then investigated the changes that occur in transcriptionally engaged RNA Polymerase when dosage compensation is disrupted, and find that dosage compensation controls recruitment of RNA Polymerase to X-linked genes.
Project description:Dosage Compensation is required to correct for uneven gene dose between the sexes. We utilized global run-on sequencing (GRO-seq) to examine how Caenorhabditis elegans dosage compensation reduces transcription of X-linked genes. To facilitate these experiments, we required accurate 5M-bM-^@M-^Y-ends of genes that have been missing due to a co-transcriptional trans-splicing event common in nematodes. We developed a modified GRO-seq protocol to identify TSSs that are supported by transcription, and determined that TSSs lie more than 1 kb upstream of the previously annotated TSS for nearly one-quarter of all genes. We then investigated the changes that occur in transcriptionally engaged RNA Polymerase when dosage compensation is disrupted, and find that dosage compensation controls recruitment of RNA Polymerase to X-linked genes. Two biological replicates of ChIP with DPY-27 and a random rabbit IgG
Project description:Dosage Compensation is required to correct for uneven gene dose between the sexes. We utilized global run-on sequencing (GRO-seq) to examine how Caenorhabditis elegans dosage compensation reduces transcription of X-linked genes. To facilitate these experiments, we required accurate 5’-ends of genes that have been missing due to a co-transcriptional trans-splicing event common in nematodes. We developed a modified GRO-seq protocol to identify TSSs that are supported by transcription, and determined that TSSs lie more than 1 kb upstream of the previously annotated TSS for nearly one-quarter of all genes. We then investigated the changes that occur in transcriptionally engaged RNA Polymerase when dosage compensation is disrupted, and find that dosage compensation controls recruitment of RNA Polymerase to X-linked genes.