Project description:As the largest salivary gland in oral cavity, the parotid gland plays an important role in initial digesting and lubricating food. The abnormal secretory function of parotid gland can lead to dental caries and oral mucosal inflammation. In recent years, single-cell RNA sequencing (scRNA-seq) has been used to explore the heterogeneity and diversity of cells in various organs and tissues. However, the transcription profile of human parotid gland at single-cell resolution has not been reported yet. In this study, we constructed the cell atlas of human parotid gland using 10x Genomics platform. Characteristic gene analysis identified the biological functions of serous acinar cell populations in secreting digestive enzymes and antibacterial proteins. We revealed the specificity and similarity of parotid gland comparing to other digestive glands through comparative analyses of other published scRNA-seq datasets. We also identified the cell-specific expression of hub genes for Sjogren’s syndrome in human parotid gland by integrating the results of GWAS and bulk RNA-seq, which highlighted the importance of immune cell dysfunction in parotid Sjogren’s syndrome pathogenesis.
Project description:Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease with complex etiopathogenesis. Here we use Affymetrix U133 plus 2.0 microarray gene expression data from human parotid tissue. Parotid gland tissues were harvested from 17 pSS and 14 14 non-pSS sicca patients and 18 controls. The data were used in the following article: Nazmul-Hossain ANM, Pollard RPE, Kroese FGM, Vissink A, Kallenberg CGM, Spijkervet FKL, Bootsma H, Michie SA, Gorr SU, Peck AB, Cai C, Zhou H, Horvath S, Wong DTW (2012) Systems Analysis of Primary Sjögren’s Syndrome Pathogenesis in Salivary Glands: Comparative Pathways and Molecular Events in Humans and a Mouse Model. Parotid gland tissues were harvested from 17 pSS and 14 non-pSS sicca patients and 18 controls.
Project description:Primary Sjögren’s syndrome (pSS) is a chronic autoimmune disease with complex etiopathogenesis. Here we use Affymetrix U133 plus 2.0 microarray gene expression data from human parotid tissue. Parotid gland tissues were harvested from 17 pSS and 14 14 non-pSS sicca patients and 18 controls. The data were used in the following article: Nazmul-Hossain ANM, Pollard RPE, Kroese FGM, Vissink A, Kallenberg CGM, Spijkervet FKL, Bootsma H, Michie SA, Gorr SU, Peck AB, Cai C, Zhou H, Horvath S, Wong DTW (2012) Systems Analysis of Primary Sjögren’s Syndrome Pathogenesis in Salivary Glands: Comparative Pathways and Molecular Events in Humans and a Mouse Model.
Project description:Whole human genome arrays were used to assess the transcriptome differences in CD3+CD4+CD45RA- memory T cells isolated and sorted from minor salivary gland biopsy tissue of individuals who met 2002 American European Consensus Group classification criteria for primary Sjogren’s syndrome (SS) and subjects who did not meet criteria for SS, lacked focal lymphocytic sialoadenitis, lacked anti-Ro antibodies, lacked anti-La antibodies, but who had subjective symptoms of dryness (non-SS, sicca controls).
Project description:Pseudoexfoliation syndrome (PEX) is a systemic disorder that manifests as a fluffy, proteinaceous fibrillar material throughout the body. In the eye, such deposits result in glaucoma (PEXG), due to impeding aqueous humor outflow. When a patient presents acute glaucoma, it is necessary to remove some of the aqueous fluid within the eye to relief pain and pressure. This label free proteomics dataset was collected from human donors during cataract surgery. The aqueous humor was collected during essential ophthalmic procedures that allowed paracentesis after obtaining informed consents from human subjects without collecting identifiers, but all disease and medication history were collected. The sample collection included non-glaucomatous controls (CTL-GC), those with pseudoexfoliation syndrome (PEX-GC), and synthesized GC-Globulin pure protein (GC-Pure). Approximately 50-120 ul volume of AH was collected by paracentesis and stored in -80C immediately upon acquisition until analysis. Protein extraction was carried out by homogenization of the tissue in extraction buffer (TEAB, NaCl and SDS). Protein amounts were estimated and normalized to 10 ug across experimental samples. Samples were reduced using TCEP, alkylated with iodoacetamide and digested overnight with trypsin. Untargeted liquid chromatography-mass spectrometry was performed on an Easy nLC 1000 liquid chromatograph coupled to a QExactive mass spectrometer (LC-MS/MS). Data analysis was performed using Proteome Discoverer 3.0 and Graph Pad Prism 10. Each sample was run three separate times.
Raw mass spectrometry data files were analyzed using Proteome Discoverer 3.0. The human proteome was downloaded from UniProt and used as the target database for protein identification. Max missed cleavage site was set to 2 and minimum peptide length to 6. Precursor Mass Tolerance was set to 10ppm and Fragment Mass Tolerance to 0.02 Da. Post-translational modifications for experimental proteins included oxidation, acetylation, and carbamidomethylation. The normalization was set to total peptide amount and confidence to low.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:Tissue resident memory cells (Trm) are a specialized subset of T cells residing persistently and long-term within specific tissues that contribute to persistent inflammation, tissue damage, and aberrant immune responses. Expansion of Trm in the salivary gland of primary Sjogren’s Syndrome (pSS) and its animal models suggests CD103 determines the tissue localization of Trm. We characterized phenotype and function of Trm and the role of CD103 in pSS.