Project description:Shatavari is a herbal dietary supplement that may increase skeletal muscle strength in younger and older adults. Shatavari contains compounds with both estradiol-like and antioxidant properties, which could enhance muscle function. Postmenopausal women may derive the greatest benefit, as estrogen deficiency adversely impacts skeletal muscle function. However, mechanistic insights are limited and the effects of shatavari on muscle function require further characterization. In this randomised, double-blind trial, 17 young (23 ±5yr) and 22 older (63±5yr) women completed an eight-week leg resistance training programme. They consumed either a placebo or shatavari (1000mg/d, equivalent to 26,500 mg/d fresh weight) supplement throughout. Pre and post training, measures of leg strength, neuromuscular function and vastus lateralis (VL) biopsies were obtained. Tandem-mass-tagged VL proteomic analyses were performed. Additionally, resistance training (RT) is the gold standard intervention for ameliorating sarcopenia. Outstanding mechanistic questions remain regarding the malleability of the molecular determinants of skeletal muscle function in older age. Discovery proteomics can expand such knowledge. We further aimed to compare the effect of RT on the skeletal muscle proteome and neuromuscular function (NMF) in older and younger women.
Project description:This study aimed to investigate the effects of glucose restriction (GR) on energy metabolism and muscle fiber type in skeletal muscle. To achieve this goal, we created a mouse model of innate glucose limitation by mutating the major glucose transporter 4 (Glut4) in skeletal muscle. We performed proteomic and phosphoproteomic analyzes of gastrocnemius samples from 12-week-old male Glut4m mice, with or without low-intensity treadmill training.
Project description:Short RNA sequncing was performed to determine the effects of endurance exercise training on miRNA expression in human skeletal muscle.
Project description:Skeletal muscle is a complex heterogeneous tissue comprised of diverse muscle fiber and non-fiber cell types that, in addition to movement, influences other systems such as immunity, metabolism and cognition. We investigated gene expression patterns of resident human skeletal muscle cells using both single-cell RNA-seq and RNA-seq of single muscle fiber dissections from vastus lateralis. We generated transcriptome profiles of the major multinucleated human skeletal muscle fiber-types as well as 11 human skeletal muscle mononuclear cell types, including immune, endothelial, pericyte and satellite cells. We delineated two fibro-adipogenic progenitor cell subtypes that may contribute to heterotopic ossification and muscular dystrophy fibrosis under pathological conditions. An important application of cell type signatures is for computational deconvolution of cell type specific gene expression changes using data from bulk transcriptome experiments. Analysis of transcriptome data from a 12 week resistance exercise training study using these human skeletal muscle cell-type signatures revealed significant changes in specific mononuclear cell-type proportions related to age, sex, acute exercise and training. This characterization of human skeletal muscle cell types will resolve cell-type specific changes in large-scale physical activity muscle transcriptome studies and can further the understanding of the diverse effects of exercise and the pathophysiology of muscle disease.
Project description:Skeletal muscle is a complex heterogeneous tissue comprised of diverse muscle fiber and non-fiber cell types that, in addition to movement, influences other systems such as immunity, metabolism and cognition. We investigated gene expression patterns of resident human skeletal muscle cells using single-cell RNA-seq of dissections from vastus lateralis. We generate transcriptome profiles of 11 mononuclear human skeletal muscle mononuclear cell types, including immune, endothelial, pericyte and satellite cells. We delineate two fibro-adipogenic progenitor cell subtypes that may contribute to heterotopic ossification and muscular dystrophy fibrosis under pathological conditions. An important application of cell type signatures is for computational deconvolution of cell type specific changes using data from bulk transcriptome experiments. Analysis of transcriptome data from a 12 week resistance training study using the human skeletal muscle cell-type signatures revealed significant changes in specific mononuclear cell-type proportions related to age, sex, acute exercise and training. This characterization of human skeletal muscle cell subtypes will resolve cell type specific changes in large-scale physical activity muscle transcriptome studies and can further the understanding of the diverse effects of exercise and the pathophysiology of muscle disease.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.