Project description:Aberrant activation of FGFR3 via overexpression or mutation is a frequent feature of bladder cancer; however, its molecular and cellular consequences and functional relevance to carcinogenesis are not well understood. In this study with a bladder carcinoma cell line expressing inducible FGFR3 shRNAs, we sought to identiy transcriptional targets of FGFR3 and investigate their contribution to bladder cancer development. Bladder cancer cell line RT112 was transduced with a doxycycline-inducible control EGFP shRNA or three independent FGFR3 shRNAs, designated FGFR3 shRNA 2-4, FGFR3 shRNA 4-1 and FGFR3 shRNA 6-16. These four cell lines were treated with or without doxycycline for 48 hr to deplete FGFR3 protein prior to the isolation of mRNA for microarray analysis. Genes that were differentially expressed after doxycycline induction in all three FGFR3-depleted cell lines but not in the control cell line were considered potential FGFR3-regulated genes. Each treatment group was run in triplcates, and there are 24 samples.
Project description:To better understand the molecular mechanisms underlying altered-FGFR3 oncogenic activity in bladder carcinomas, we made use of RT112 cell lines, which were derived from a human bladder tumor and endogenously expressed the FGFR3-TACC3 fusion protein, the growth and transformation of these cell lines being dependent on activated-FGFR3 activity. We conducted a gene expression analysis using Affymetrix DNA arrays in this cell line treated or not with FGFR3 siRNAs.
Project description:ELOVL6 is a member of mammalian fatty acid elongase family responsible for converting C16 saturated and monounsaturated fatty acids into C18 species. To investigate the role of ELOVL6 in human bladder cancer, we generated RT112 cells (a human bladder cancer cell line) infected with lentivirus expressing either an shRNA targeting ELOVL6 (shE6) or a scrambled shRNA (shCtrl). The aim of this experiment was to assess the effects of ELOVL6 knockdown on the transcriptome of human bladder cancer cells.
Project description:In this research, Human OneArray Microarray analysis was performed to obtain broad spectrum information about the genes differentially expressed in human bladder cancer cell line RT112 and Gemcitabine Resistant Bladder Cancer cell line RT112-Gr.
Project description:Aberrant activation of FGFR3 via overexpression or mutation is a frequent feature of bladder cancer; however, its molecular and cellular consequences and functional relevance to carcinogenesis are not well understood. In this study with a bladder carcinoma cell line expressing inducible FGFR3 shRNAs, we sought to identiy transcriptional targets of FGFR3 and investigate their contribution to bladder cancer development.
Project description:We hypothesized that ETV5 may be a mediator of the oncogenic effects of mutant FGFR3 in bladder cancer cells ETV5 was silenced by shRNA in the bladder cancer cell line 97-7 to investigate effect on phenotype. To identify downstream gene targets of ETV5 we compared gene expression profiles in silenced and control cells.
Project description:Expression array data was used to compare parental FGFR3-TACC3 fusion-driven urothelial cell lines with their FGFR inhibitor-resistant derivatives. In this dataset, we include RT112 and RT4 parental cells, RT112 cells acutely treated with PD173074 (24 h), RT112 and RT4 resistant derivatives cultured with drug and their resistant derivatives cultured for four to six passages out of drug.