Project description:The gene expression profiles of the differentiating xylem of 91 Eucalyptus grandis backcross individuals were characterized following a loop design (Churchill, G.A. Nat Genet. 2002 Dec;32 Suppl:490-5). In this design, RNA from genotype 1666 (labeled with Cy5) was hybridized with RNA from genotype 1667 (labeled with Cy3) on the first slide(GEO accession number GSM7637); the same genotype 1667 (now labeled with Cy5) was compared with genotype 1669 (Cy3) on the second slide (GSM7638), and so on. The loop was completed when genotype 1666 (Cy3) was contrasted to individual 1796 (Cy3) on slide GSM7727. Therefore, 91 individuals (genotypes) from the E. grandis backcross population were analyzed in two replicates, one with RNA labeled with Cy3 and the other with Cy5. Keywords = Eucalyptus, xylem, microarray Keywords: ordered
Project description:The gene expression profiles of the differentiating xylem of 91 Eucalyptus grandis backcross individuals were characterized following a loop design (Churchill, G.A. Nat Genet. 2002 Dec;32 Suppl:490-5). In this design, RNA from genotype 1666 (labeled with Cy5) was hybridized with RNA from genotype 1667 (labeled with Cy3) on the first slide(GEO accession number GSM7637); the same genotype 1667 (now labeled with Cy5) was compared with genotype 1669 (Cy3) on the second slide (GSM7638), and so on. The loop was completed when genotype 1666 (Cy3) was contrasted to individual 1796 (Cy3) on slide GSM7727. Therefore, 91 individuals (genotypes) from the E. grandis backcross population were analyzed in two replicates, one with RNA labeled with Cy3 and the other with Cy5. Keywords = Eucalyptus, xylem, microarray
Project description:BackgroundLand plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes.ResultsIn order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis.ConclusionsThe implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Project description:Microarray analysis of juvenile and mature cuttings of Eucalyptus grandis revealed developmental regulation of nitrate reductase which potentially influences nitric oxide production and adventitious root formation