Project description:This SuperSeries is composed of the following subset Series: GSE41706: Expression data from adult (9 month-old) hearts from GRK2 heterozygous C57BL/6J mice and its wild type littermates GSE41807: Expression data from adult (9 month-old) and young (4 month-old) hearts from C57BL/6J mice GSE41808: Expression data from adult (9 month-old) and young (4 month-old) hearts from GRK2 heterozygous C57BL/6J mice. GSE41809: Expression data from young (4 month-old) hearts from GRK2 heterozygous C57BL/6J mice and its wild type littermates Refer to individual Series
Project description:Label-free quantitative top-down proteomics was performed on mitochondrial lysate isolated from the hearts of 3 young (4-month-old) and 3 old (24-25-month-old) mice.
Project description:In the present work endothelial function in the aorta and femoral artery assessed in vivo by magnetic resonance imaging (MRI) was characterized in male and female 8-, 14-, 22-, 28-, and 40-week-old E3L.CETP and C57BL/6J mice. Vascular nitric oxide (NO), eicosanoids and hydrogen peroxide (H2O2) production in the aorta, were measured by electron paramagnetic resonance spectroscopy (EPR), mass spectrometry (LC/MS) and fluoresence assay, respectively. Endothelial-specific protein plasma biomarkers and global alterations in plasma proteome were asssesed by targeted and non-targeted preotomics, respectively. In C57BL/6J endothelial dysfunction was observed in 40-week-old female and male mice as evidenced by impaired endothelium-dependent vasodilation induced by acetylcholine (Ach) in the aorta or by flow in the femoral artery (flow-mediated vasodilation, FMD). In E3L.CETP mice age-dependent endothelial dysfunction was accelerated and appeared in 14-22-week-old male and 22-28-week-old female mice. In 40 week-old E3L.CETP mice endothelial dysfunction was severe in both male and female mice and was more pronounced as compared with age-matched C57BL/6J mice. Despite severe endothelial dysfunction in 40 week-old mice E3L.CETP mice neither in the aortic roots nor in brachiocephalic artery atherosclerotic plaques were not detected. Interestingly, in the presence of NOS-inhibitor (L-NAME), FMD was inhibited in all experimental groups. However, effect of L-NAME on Ach–induced vasodilation in E3L.CETP mice, was blunted as compared with C57BL/6J mice, in particular in young E3L.CETP female mice. Furthermore, Ach–induced vasodilation in the aorta was inhibited by catalase, while H2O2 production was increased, in young female but not in male E3L.CETP mice. A switch from NO to H2O2-dependent vasodilation in young female E3L.CETP mice was associated with a blunted systemic inflammation and lower number of differentially expressed proteins (DEPs) in plasma than in young E3L.CETP male mice as compared with age-and sex-matched C57BL/6J mice. However, female and male 40-week-old E3L.CETP mice displayed similar number of DEPs in plasma vs respective sex-matched younger E3L.CETP mice. In the present work endothelial function in the aorta and femoral artery assessed in vivo by magnetic resonance imaging (MRI) was characterized in male and female 8-, 14-, 22-, 28-, and 40-week-old E3L.CETP and C57BL/6J mice. Vascular nitric oxide (NO), eicosanoids and hydrogen peroxide (H2O2) production in the aorta, were measured by electron paramagnetic resonance spectroscopy (EPR), mass spectrometry (LC/MS) and fluoresence assay, respectively. Endothelial-specific protein plasma biomarkers and global alterations in plasma proteome were asssesed by targeted and non-targeted preotomics, respectively. In C57BL/6J endothelial dysfunction was observed in 40-week-old female and male mice as evidenced by impaired endothelium-dependent vasodilation induced by acetylcholine (Ach) in the aorta or by flow in the femoral artery (flow-mediated vasodilation, FMD). In E3L.CETP mice age-dependent endothelial dysfunction was accelerated and appeared in 14-22-week-old male and 22-28-week-old female mice. In 40 week-old E3L.CETP mice endothelial dysfunction was severe in both male and female mice and was more pronounced as compared with age-matched C57BL/6J mice. Despite severe endothelial dysfunction in 40 week-old mice E3L.CETP mice neither in the aortic roots nor in brachiocephalic artery atherosclerotic plaques were not detected. Interestingly, in the presence of NOS-inhibitor (L-NAME), FMD was inhibited in all experimental groups. However, effect of L-NAME on Ach–induced vasodilation in E3L.CETP mice, was blunted as compared with C57BL/6J mice, in particular in young E3L.CETP female mice. Furthermore, Ach–induced vasodilation in the aorta was inhibited by catalase, while H2O2 production was increased, in young female but not in male E3L.CETP mice. A switch from NO to H2O2-dependent vasodilation in young female E3L.CETP mice was associated with a blunted systemic inflammation and lower number of differentially expressed proteins (DEPs) in plasma than in young E3L.CETP male mice as compared with age-and sex-matched C57BL/6J mice. However, female and male 40-week-old E3L.CETP mice displayed similar number of DEPs in plasma vs respective sex-matched younger E3L.CETP mice.
Project description:Platelets were isolated from standard-housed and exercising (4 days and 28 days) 18-month-old C57BL/6J mice and mass spectrometry performed. This analysis revealed differential proteomic signatures between platelets from exercsising and standard-housed mice.
Project description:The spinal cord neural stem cell potential is contained within the ependymal cells lining the central canal. This neural stem cell potential is known to decline with age in the mouse. Here, we microdissected and dissociated into single cells the central canal region from the spinal cord of 4 young adult (3-to-4-month old) and 4 aged (18-to-19-month old) C57BL/6J mice to profile the transcriptomes of cells in and around the central canal using 10x Genomics technology.
Project description:Aging is associated with systemic chronic inflammation (inflammaging) that leads to impaired physiological functions and vulnerability to several diseases. However, underlying alterations in aged immune system resulting in gradual loss of immune fitness remain unclear. Using a combination of CD8 T cell transfer from young to old and from old to young mice and single-cell RNA sequencing, we characterized the age-associated alterations in CD8 T cells. We transferred 2 millions of purified CD8+ T cells pooled from 3 CD45.1 C57BL/6J 3 months old female mice (donor) by i.v. injection into CD45.2 C57BL/6J 24 months old female mouse (recipient) and sorted CD45.1+CD3e+CD8a+ and CD45.2+CD3e+CD8a+ T cells from the spleen 1 month post transfer to perform scRNA/TCR-seq.