Project description:Soybean aphid is one of the major limiting factors for soybean production. However, the mechanism for aphid resistance in soybean is remain enigmatic, very little information is available about the different mechanisms between antibiosis and antixenosis genotypes. Here we dissected aphid infestation into three stages and used genome-wide gene expression profiling to investigate the underlying aphid-plant interaction mechanisms. Approximately 990 million raw reads in total were obtained, the high expression correlation in each genotype between infestation and non-infestation indicated that the response to aphid was controlled by a small subset of important genes. Moreover, plant response to aphid infestation was more rapid in resistant genotypes. Among the differentially expressed genes (DEGs), a total of 901 transcription factor (TF) genes categorized to 40 families were identified with distinct expression patterns, of which AP2/ERF, MYB and WRKY families were proposed to playing dominated roles. Gene expression profiling demonstrated that these genes had either similar or distinct expression patterns in genotypes. Besides, JA-responsive pathway was domination in aphid-soybean interaction compared to SA pathway, which was not involved plant response to aphid in susceptible and antixenotic genotypes but played an important role in antibiosis one. Throughout, callose were deposited in all genotypes but it was more rapidly and efficiently in antibiotic one. However, reactive oxygen species were not involved in response to aphid attack in resistant genotypes during aphid infestation. Our study helps uncover important genes associated with aphid-attack response in antibiosis and antixenotic genotypes of soybean.
Project description:This study was designed to identify the sRNAs in Aphis gossypii (cotton-melon aphid) during Vat-mediated resistance in teraction with melon
Project description:The aim of this experiment was to compare the transciptome of the peach-potato aphid (Myzus persicae) clone 4106a (a laboratory insecticide-susceptible standard collected from potato in Scotland in 2000) with clone FRC (an insecticide resistant aphid clone collected from peach in France in 2009) to identify which genes are over or underexpressed in the resistant phenotype. The custom microarray used in this study was designed using the Agilent eArray platform (Agilent Technologies) by the Georg Jander Lab and is based on a previously described array containing probes for >10, 000 M. persicae unigenes produced by Sanger sequencing (Ramsey, Wilson et al. 2007) augmented with an additional 30, 517 probe set designed on EST unigene sequences identified in a 454 sequencing project (Ramsey, Rider et al. 2010). The final slide layout consists of four arrays of 45, 220 60-mer probes and these are produced by Agilent by in situ oligonucleotide synthesis. References: Ramsey, J. S., D. S. Rider, et al. (2010). "Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae." Insect Molecular Biology 19: 155-164. Ramsey, J. S., A. C. C. Wilson, et al. (2007). "Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design." BMC Genomics 8.
Project description:Gene expression profiles in resistant (cv. Dowling) and susceptible (Williams 82) soybean genotypes [Glycine max (L.) Merrill] were compared at 6 and 12 h with and without aphid (Aphis glycines Matsumura) infestation using cDNA microarrays consisting of approximately 18,000 soybean-expressed sequence tags. More genes were induced in Dowling than Williams 82 at 6 h after infestation. Genes that were differentially expressed between aphid and control treatments were selected as aphid-response genes. Eighty-four genes showed specific responses in Dowling and included genes related to defense and other processes. Expression of three defense-related genes was examined at 6, 12, 24, 48, and 72 h after infestation in both genotypes by quantitative real-time PCR. The increases in the transcripts of three defense-related genes were earlier and stronger at 6, 12 and 24 h after infestation in Dowling compared to Williams 82. The differential gene expression between the two genotypes without aphids was determined, and five genes with constitutively higher expression levels were found in Dowling. Keywords = genomic Keywords = Defense Responses Keywords = plant Keywords = DNA-binding protein Keywords = PR proteins Keywords = plant resistance Keywords = signal transduction keywords = insect Keywords: susceptible vs resistant