ABSTRACT: Expression data from Tet2-hypomorph (knockdown) and/or Ezh2-null Lineage-Sca-1+c-Kit+ (LSK) cells and granulocyte-macrophage progenitors (GMPs)
Project description:The study was a comparison of gene expression using RNA-seq. We analyzed the stem and progenitor cells from WT and Vav-cre+ Tet2fl/fl Flt3-ITD (T2F3) mice. We isolated stem cells LSK (lin- sca+ kit+) and granulocyte-macrophage progenitors GMP (lin- sca- kit+ fcgr+ cd34+) cells from bone marrow. Comparisons were made across genotypes WT vs. T2F3 and cell types LSK vs. GMP. Comparison of WT and Tet2-/-Flt3ITD bone marrow stem and progenitor cells.
Project description:We report the genome wide distribution of the three states of H3K79 methylation (H3K79me1/me2/me3) and H3K27me3 in mouse lineage negative Sca-1 positive Kit positive cells (LSKs), granulocyte macrophage progenitors (GMPs) and LSK derived MLL-AF9 leukemias in the presence or absence of the Af10 OM-LZ domain. Legend- MIT:MSCV-IRES-tdTomato (Empty vector control) and CRE (MIT vector with the Cre recombinase).
Project description:We report the genome wide distribution of the three states of H3K79 methylation (H3K79me1/me2/me3) and H3K27me3 in mouse lineage negative Sca-1 positive Kit positive cells (LSKs), granulocyte macrophage progenitors (GMPs) and LSK derived MLL-AF9 leukemias in the presence or absence of the Af10 OM-LZ domain. Legend- MIT:MSCV-IRES-tdTomato (Empty vector control) and CRE (MIT vector with the Cre recombinase). We examined the H3K79 me1,me2,me3 and H3K27me3 profiles by ChIP-seq in lineage negative Sca-1 positive, Kit positive (LSK) cells, granulocyte macrophage progenitors (GMPs) and bone marrow cells from sacrificed terminally ill secondary MLL-AF9 positive leukemic mice. In case of the MLL-AF9 leukemias, the ChIP-seq experiments were performed in 2 conditions in the presence or absence of the Dot1l interacing octapeptide-motif leucine zipper (OM-LZ) domain of Af10. For the leukemia experiments, leukemias derived from the Af10 OM-LZ homozygous floxed background were transduced with MSCV-IRES-tdTomato control vector (MIT) or its Cre-recombinase expressing counterparts (CRE). Subsequently, we sorted tdTomato positive cells and injected them into sub-lethally irradiated syngenic secondary recipient mice. Seconday leukemias obtained from these MIT or CRE expressing cells were used for ChIP -seq studies.
Project description:The study was a comparison of gene expression using RNA-seq. We analyzed the stem and progenitor cells from WT and Vav-cre+ Tet2fl/fl Flt3-ITD (T2F3) mice. We isolated stem cells LSK (lin- sca+ kit+) and granulocyte-macrophage progenitors GMP (lin- sca- kit+ fcgr+ cd34+) cells from bone marrow. Comparisons were made across genotypes WT vs. T2F3 and cell types LSK vs. GMP.
Project description:To interrogate the molecular pathways disrupted by Jak2V617F expression and/or Tet2 loss, Lin-negative, Sca-1-positive, c-kit-positive (LSK) hematopoietic progenitor cells were isolated from bone marrow of wild-type, Jak2V617F, Tet2-null or Jak2V617F/Tet2-null animals (n= 2-4 mice per group) and subjected to gene expression profiling.
Project description:The pathways by which oncogenes, such as MLL-AF9, initiate transformation and leukemia in humans and mice are incompletely defined. In a study of target cells and oncogene dosage, we found that Mll-AF9, when under endogenous regulatory control, efficiently transformed LSK (Lin- Sca1+ c-kit+) stem cells while committed granulocyte-monocyte progenitors (GMPs) were transformation-resistant and did not cause leukemia. Mll-AF9 was expressed at higher levels in hematopoietic stem (HSC) than GMP cells. Mll- AF9 gene dosage effects were directly shown in experiments where GMPs were efficiently transformed by the high dosage of Mll-AF9 resulting from retroviral transduction. Mll-AF9 up-regulated expression of 196 genes in both LSK and progenitor cells, but to higher levels in LSKs than in committed myeloid progenitors. Keywords: mutant hematopoietic cells
Project description:PcG proteins form the polycomb repressive complexes (PRC) 1 and 2, functioning as transcriptional repressors through histone modifications. They have been implicated in the maintenance of self-renewing somatic and cancer stem cells. PcG genes have been characterized as tumor suppressor genes as exemplified by somatic inactivating mutations of EZH2, a gene encoding histone methyltransferase in PRC2, in myeloid malignancy. Mice deficient for Tet2 have been reported to recapitulate some aspects of myeloid malignancies. We evaluated the Ezh2-deficient mice and also tested the impact of concurrent depletion of Ezh2 and Tet2 on hematopoiesis. Purified LSK cells and GMPs from BM of recipient mice repopulated with wild-type, Tet2KD/KD, Ezh2-/- and Tet2KD/KDEzh2-/- fetal liver cells were subjected to RNA extraction and hybridization on Agilent microarrays.
Project description:The capacity of the hematopoietic system to promptly respond to peripheral demands relies on adequate pools of progenitors able to transiently proliferate and differentiate in a regulated manner. However, little is known about factors that may restrain progenitor maturation to maintain their reservoirs. In addition to a profound defect in hematopoietic stem cell (HSC) self-renewal, conditional knockout mice for the Pbx1 proto-oncogene have a significant reduction in lineage-restricted progenitors, including common myeloid progenitors (CMPs) and, to a lesser extent, granulocyte-monocyte progenitors (GMPs). Through analysis of purified progenitor proliferation, differentiation capacity and transcriptional profiling, we demonstrate that in the absence of Pbx1 the CMP pool is reduced due to aberrantly rapid myeloid maturation, associated with decreased expression of Meis1 and its targets including Flt3. BM cells were obtained from multiple bones of individual three to five week old Tie2Cre+.Pbx1-/f or Tie2Cre+.Pbx1+/f control mice (4-5 biological replicates/group). CMPs and GMPs were sorted by flow cytometry according to the following markers: Lin-/c-Kit+/Sca-/CD34+/CD16/32int, and Lin-/c-Kit+/Sca-/CD34+/CD16/32high, respectively, prior to RNA extraction.
Project description:To identify genes that are influenced by the catalytic and non-catalytic functions of Tet2 in hematopoietic stem and progenitor cells (HSPCs), we analyzed the gene expression profiles of Tet2 catalytic mutant (Tet2 Mut), Tet2 knockout (Tet2 KO) and wild-type HSPCs (or LSK, Lin–Sca-1+c-Kit+) and multi-potent progenitor (or MPP, Lin–) cells by RNA-seq.
Project description:We wanted to investigate the effects of Dot1l deletion on gene expression in LSKs and GMPs of C57/BL6 mice Aberrant Hox gene activation is a recurrent feature in several different types of human leukemia, including leukemias with rearrangements of the mixed lineage leukemia (MLL) gene. In this study, we demonstrate that Hox gene expression is controlled by higher degree H3K79 methylation in acute myeloid leukemia (AML). We show that the deposition of progressive H3K79 methylation states at the genomic loci of critical Hox genes is dependent on the interaction of the H3K79 methyltransferase Dot1l with Af10, a protein that is found in the Dot1l complex isolated from diverse cell types. Furthermore, abrogation of the Dot1l-Af10 interaction reverses aberrant epigenetic profiles found in the leukemia epigenome and impairs the transforming ability of mechanistically distinct AML oncogenes. Lineage negative Sca-1 positive Kit positive (LSK) cells and granulocyte macrophage progenitors (GMPs) were sorted from Dot1 wt/wt x Mx-Cre mice or Dot1l fl/fl x Mx-Cre mice were injected with PIPC. PIPC injection induced biallelic deletion of the Dot1l allele in the Dot1l fl/fl mice but not the Dot1l wt/wt mice. The Dot1l wt/wt LSKs and GMPs were compared to the Dot1l -/- counterparts by RNA extraction and Microarrays.