Project description:Schnurri-2 (Shn-2), an NF-kappa B site-binding protein, tightly binds to the enhancers of major histocompatibility complex (MHC) class I genes and inflammatory cytokines, which have been shown to harbor common variant single nucleotide polymorphisms associated with schizophrenia. Shn-2 knockout mice show behavioral abnormalities that strongly resemble those of schizophrenics. We performed gene expression microarray analysis of dentate gyri from Shn-2 knockout and wild-type control mice. Dentate gyrus RNA isolated from six Shn-2 knockout and six control wild-type mice were compared.
Project description:Schnurri-2 (Shn-2), an NF-kappa B site-binding protein, tightly binds to the enhancers of major histocompatibility complex (MHC) class I genes and inflammatory cytokines, which have been shown to harbor common variant single nucleotide polymorphisms associated with schizophrenia. Shn-2 knockout mice show behavioral abnormalities that strongly resemble those of schizophrenics. We performed gene expression microarray analysis of prefrontal cortices from Shn-2 knockout and wild-type control mice. Prefrontal cortex RNA isolated from six Shn-2 knockout and six control wild-type mice were compared.
Project description:Schnurri-2 (Shn-2), an NF-kappa B site-binding protein, tightly binds to the enhancers of major histocompatibility complex (MHC) class I genes and inflammatory cytokines, which have been shown to harbor common variant single nucleotide polymorphisms associated with schizophrenia. Shn-2 knockout mice show behavioral abnormalities that strongly resemble those of schizophrenics. We performed gene expression microarray analysis of dentate gyri from Shn-2 knockout and wild-type control mice.
Project description:Schnurri-2 (Shn-2), an NF-kappa B site-binding protein, tightly binds to the enhancers of major histocompatibility complex (MHC) class I genes and inflammatory cytokines, which have been shown to harbor common variant single nucleotide polymorphisms associated with schizophrenia. Shn-2 knockout mice show behavioral abnormalities that strongly resemble those of schizophrenics. We performed gene expression microarray analysis of prefrontal cortices from Shn-2 knockout and wild-type control mice.
Project description:Gene expression was measured from the dentate gyrus and entorhinal cortex harvested from human postmortem samples. We harvested the dentate gyrus DG from healthy human brains ranging from 33 to 88 years of age. Additionally, from each brain we harvested the entorhinal cortex (EC) as a within-brain control. Using Affymetrix microarray chips we generated gene-expression profiles of each individual tissue samples. DG expression levels were first normalized against the EC, and the normalized DG transcripts were then correlated against age.
Project description:Semantic dementia (SD) is a clinical subtype of frontotemporal dementia characterized by impaired word comprehension and semantic memory, and occurs nearly always sporadically. Neuroimaging typically reveals asymmetric, predominantly left-sided, atrophy of the anterior temporal pole, anterior fusiform gyrus, and the hippocampus. Post-mortem pathological examination shows frontotemporal lobar degeneration TDP type C, characterized by long dystrophic neurites in the temporal cortex and typical round, TDP-43-positive neuronal inclusions in the dentate gyrus. While neuronal loss in the temporal cortex is severe in the end stage of disease, the dentate gyrus seems relatively spared. This characteristic and well-defined disease profile suggests SD patients share a specific underlying disease biology. Recently, we performed the first quantitative proteomic study of the dentate gyrus, uncovering potential SD-specific biological pathways. Here, we report on the first quantitative proteomic study of the temporal cortex in SD. We studied the same patient and non-demented control cohort, enabling comparative analysis between the two brain regions. In addition, we compared our dataset with other frontotemporal lobar degeneration subtypes and Alzheimer’s disease to separate SD disease-specific changes from common neurodegenerative processes. In the temporal cortex, involvement of the ribonucleoprotein complex and presynaptic regulation of cytosolic calcium levels by voltage-gated calcium channels appear unique facets of the SD disease process. Furthermore, we observed a striking difference in the abundance of neuropathological proteins TDP-43 and ANXA11, and their interactors between the temporal cortex and dentate gyrus. The elucidation of these potentially unique disease-specific mechanisms improves our understanding of the pathophysiological processes in SD and paves the way for the discovery of novel therapeutic targets.
Project description:To identify genes responsible for stem and progenitor cells maintenance, we sought here to find genes underlying premature neural aging, and whose deregulated expression could be rescued by running. Through RNA sequencing we analyzed the transcriptomic profiles of the dentate gyrus isolated from Btg1 wild-type or Btg1 knockout adult (two-month-old) mice submitted to physical exercise or sedentary. In Btg1 knockout mice, 545 genes were deregulated, relative to wild-type, while 2081 genes were deregulated by running. We identified 42 genes whose expression was not only down-regulated in the dentate gyrus of Btg1 knockout, but was also counter-regulated to control levels by running in Btg1 knockout mice, vs. sedentary.