Project description:Aurora Kinase B and ZAK interaction model
Equivalent of the stochastic model used in "Network pharmacology model predicts combined Aurora B and ZAK inhibition in MDA-MB-231 breast cancer cells" by Tang et. al. 2018.
The only difference is cell division and partitioning of the components, which are available in the original model for SGNS2.
Project description:Gene-level and exon-level analysis of gene expression in MDA-MB-231 cells that stably express control shRNA or integrin α3-targeting shRNA. The laminin-332-binding integrin α3b1 is expressed highly in many breast cancer cells, but its roles in regulating gene expression programs that promote breast cancer progression have not been explored. In order to identify genes that are regulated by α3b1 in human breast cancer cells, we used a lentiviral approach to express an α3-targeting shRNA to suppress integrin α3b1 in MDA-MB-231 cells, and we identified subsequent changes in gene expression and alternate exon useage.
Project description:Gene-level and exon-level analysis of gene expression in MDA-MB-231 cells that stably express control shRNA or integrin α3-targeting shRNA. The laminin-332-binding integrin α3b1 is expressed highly in many breast cancer cells, but its roles in regulating gene expression programs that promote breast cancer progression have not been explored. In order to identify genes that are regulated by α3b1 in human breast cancer cells, we used a lentiviral approach to express an α3-targeting shRNA to suppress integrin α3b1 in MDA-MB-231 cells, and we identified subsequent changes in gene expression and alternate exon useage. We used the Affymetrix Human Exon 1.0 ST platform to analyze biological replicates of MDA-MB-231 cells that were transduced with lentivirus to stably express either control shRNA or α3-targeting shRNA. Array data was processed by Affymetrix Exon Array Computational Tool.
Project description:Parvin-beta is a focal adhesion protein downregulated in human breast cancer cells. Loss of Parvin-beta contributes to increased integrin-linked kinase activity, cell-matrix adhesion, and invasion through the extracellular matrix in vitro. The effect of ectopic Parvin-beta expression on the transcriptional profile of MDA-MB-231 breast cancer cells, which normally do not express Parvin-beta was evaluated. Particular emphasis was placed upon propagating MDA-MB-231 breast cancer cells in three-dimensional culture matrices. Gene expression profiles of vector control and Parvin-beta transfected MDA-MB-231 cells cultured on (A) monomeric type I collagen coated plastic, (B) embedded in a type I collagen gel, and (C) embedded in basement membrane (growth factor reduced Matrigel), were compared. Interestingly, Parvin-beta re-expression in MDA-MB-231 cells increased the mRNA expression, serine 82 phosphorylation (mediated by CDK9), and activity of the nuclear hormone receptor, peroxisome proliferator-activated receptor gamma (PPARgamma) and a concomitant increase in lipogenic gene expression as a downstream effector of PPARgamma. Importantly, Parvin-beta suppressed breast cancer growth in vivo with associated decreased proliferation. These data suggest that Parvin-beta might influence breast cancer progression.. Keywords: Gene expression profiling in two dimensional vs three dimensional cell culture
Project description:MDA-MB-231 breast cancer cells and MCF-10A breast cells were exposed to 1 mT 50 Hz extremely low-frequency magnetic field (ELF-MF) for 4 hours