Project description:Marine sediments harbor highly diverse microbial communities that contribute to global biodiversity and play essential roles in the ecosystem functioning. However, the metaproteome of marine sediments remains poorly understood. Extracting proteins from environmental samples can be challenging, especially in marine sediments due to their complex matrix. Few studies have been conducted on improving protein extraction methods from marine sediments. To establish an effective protein extraction workflow for clay-rich sediments, we compared, combined and improved several protein extraction methods. The presented workflow includes blocking of protein binding sites on sediment particles with high concentrations of amino acids, effective cell lysis via ultra-sonication, and the electro-elution and simultaneous fractionation of proteins. Using this workflow, we were able to recover 100% of the previously added Escherichia coli proteins from the sediment.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River.
Project description:Xiangjiang River (Hunan, China) has been contaminated with heavy metal for several decades by surrounding factories. However, little is known about the influence of a gradient of heavy metal contamination on the diversity, structure of microbial functional gene in sediment. To deeply understand the impact of heavy metal contamination on microbial community, a comprehensive functional gene array (GeoChip 5.0) has been used to study the functional genes structure, composition, diversity and metabolic potential of microbial community from three heavy metal polluted sites of Xiangjiang River. Three groups of samples, A, B and C. Every group has 3 replicates.
Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.