Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:The thermophilic Aquificales inhabit and play important biogeochemical roles in the geothermal environments globally. Although intensive studies on physiology, microbial ecology, biochemistry, metagenomics and metatranscriptomics of the Aquificales¬ species and Aquificales-containing environmental samples have been conducted, comprehensive understandings about their ecophysiology, especially in the natural niches have been limited. In the present study, an integrated suite of metagenomic, metatranscriptomic and metaproteomic analyses, for the first time, were conducted on a filamentous microbial community from the Apron and Channel Facies (ACF) of CaCO3 (travertine) deposition at Narrow Gauge, Mammoth Hot Springs, Yellowstone National Park.
Project description:We sequenced total RNA from whole blood samples of 27 wild gray wolves from Yellowstone National Park. Gene expression level analysis of both male and female wolves, ranging from ages 0.8-8.8 years.
Project description:To understand the ecophysiology of Sulfurihydrogenibium spp. in situ, integrated metagenomic, metatranscriptomic and metaproteomic analyses were conducted on a microbial community from Narrow Gauge at Mammoth Hot Springs, Yellowstone National Park.
Project description:Protein stable isotope fingerprinting (P-SIF) is a method to measure the carbon isotope ratios of whole proteins separated from complex mixtures, including cultures and environmental samples. The goal of P-SIF is to expose the links between identity and function in microbial ecosystems by (i) determining the values of δ13C for different taxonomic divisions, and (ii) using those values as clues to the metabolic pathways employed by the respective organisms. This project measures >200 protein fractions and δ13C values for a sample of Cyanobacteria + Chloroflexi dominated microbial mat from Yellowstone National Park, USA.
Project description:Ultra-violet (UV) and high-intensity visible (VIS) radiation are environmental stressors known to harm photosynthetic organisms through the generation of reactive intermediates that damage photosynthetic machinery. This study shows the potential of using a thermoacidophilic red alga of the order Cyanidiales to model in situ algal gene expression dynamics as a function of UV exposure and seasonal shifts in UV-VIS intensity. These algae exhibit a dynamic seasonal biomass fluctuation referred to as 'mat decline' where viability drastically decreases as seasonal UV-VIS irradiance intensity increases. In Yellowstone National Park (YNP), temporal experiments coupling UV irradiance manipulations (filtering) with whole-community transcription profiling revealed significant cyanidial gene expression changes occurring as a result of exposure to UV, and that patterns of response adjust across low and high irradiance time periods. Separate analyses examined genes responding to either increasing seasonal UV or VIS intensity, or by the combined effects of both irradiance wavelengths (UV and VIS). Results not only corroborated known physiological changes to solar irradiance, but also suggested the strategies employed to deal with excess VIS and UV intensity may be highly integrated. Finally, a suite of comparative analyses determined the relative utility of environmental transcriptomics technologies in studying ecologically-relevant expression patterns. Results suggest in situ expression profiles will improve understanding of how photosynthetic organisms are responding to environmental stressors as they are observed in nature.